

GLUE Reference Guide

3/18/11

In VisualEyes, using GLUE items is the heart of making interactive visualizations. This is
the most difficult concept in VisualEyes to understand, but it is simple in principle. GLUE
is an acronym, the General Language to Unite Events with two primary functions:
To cause resources, such as images, paths, and charts, to show up on the screen,
automatically or on command and to connect the data resources to data consumers,
such as through display tables, popup windows, charts, and data-driven maps, using
small scripts.

Screen Redraw

Because VisualEyes projects are highly interactive, the screen constantly needs
to be redrawn to reflect the changing visualization. We call this a screen redraw,
and it may be the result of clicking on a control panel item, scrolling of the
timeline, or clicking on a screen it.

Your project is made up of a number of items such as such as a resource, logo
or frame items within your project file. These items are loaded by VisualEyes
when it first starts up and provide the "building blocks" your project will use.

Items such as the controlPanel, timeline, and logo show up automatically, but
resources need to be "told" to draw themselves on a screen redraw, and that's
what adding a GLUE item can do.

When a GLUE Item is "run"

A GLUE item is different from other items, in that it is active. GLUE items cause
something to happen, such as an image to be displayed, some values retrieved
from a data source, etc.

The screen is redrawn at startup, or as a result of a user's action, such as
clicking on a control panel item or scrolling of the timeline. Each time the screen
is redrawn, VisualEyes looks at the GLUE items in the view and if the GLUE is
set to be activated, it will be run.

Being run means the resource the GLUE is connected (via the from attribute) to
will be displayed, and/or the script within the GLUE item will be executed line by
line. This occurs each time the screen is redrawn if the init attribute is set to
"true." GLUE can also be run by items such as checkboxes in a controlPanel by
referring to its id attribute.

VisualEyes GLUE Reference

The Format of a GLUE item

A GLUE item is an item like any other item in VisualEyes, such as a resource,
logo or frame item:

 id=”name”
 from="name of resource"
 init=”false”
 once=”false”
 [script] (optional)

There are four possible attributes to a GLUE item:

1. The id attribute allows you to give the GLUE item a unique name to by.
2. The from attribute specifies the resource to display on the screen.
3. The init attribute causes the GLUE run each time the screen in drawn.
4. Once causes the GLUE run only once (useful for initialization).

Aside from the 4 attributes, you can optionally add a script that will support
calculating tables and fields within resources – and many common types of
operations can be defined between these two elements, to relate and display rich
data relationships between them on a spatial and temporal basis.

You do not need to specify all of the attributes, as they have default values if left
out. The init and once attributes are assumed false if not present, and unless the
GLUE item will be called by a controlPanel item, the id can be blank.

A Simple GLUE Example

The simplest case for using GLUE in VisualEyes is to get an image to appear on
the screen. Assume we have created an image resource in VisualEyes called
myPic:

id="myPic"
type="image"
src="www.mysite.com/pic.jpg

To make myPic appear, we need to "GLUE" it to the screen each time the screen
is drawn, so we add the GLUE command below. It has the init attribute set to
"true" and the from attribute set to "myPic":

from="myPic"
init="true"

We did not need to name this GLUE with an id because it will be called each time
the screen is redrawn. So when the user clicks on something, moves the
timeline, or the project simply starts up, the image referred to by "myPic" will be
drawn on the screen.

©2007-2011 Bill Ferster / The University of Virginia 2

VisualEyes GLUE Reference

GLUE Scripts

Scripts can be thought of as a kind of "to-do list" of things to be done in your
project when the GLUE item is run, at startup or in response to some action your
user has done, like a clicking on a control panel item, clicking on a map, or
scrolling a timeline. The lines on the GLUE script are individual actions that are
executed in the order that they appear, much the way a computer program acts
on lines of code.

OK. I've been trying to hide it, but scripts ARE lines of code – but designed to
simplify the process for creating complex visualizations. This part of VisualEyes
will be the hardest for many you to grasp in doing your projects, but the payoff is
big: With GLUE scripts, you will be able to do things easily in your projects that
had to be programmed by a computer programmer with years of experience.

Each line in a GLUE script contains a combination of GLUE methods and GLUE
lists.

GLUE Methods

Methods are of built-in activities you can call upon to put in your GLUE scripts,
such as:

 Running a query on a table of data
 Controlling a digital movie
 Animating items on the screen, or
 Calling up web pages

You can see a list of all of these activities in the appendix of this guide. These
methods are also available to select from in VisEdit when you are editing a script
in your project.

In a GLUE script, a method consists of the following:

 A name
 One or more parameters enclosed in parentheses

VisualEyes, all of the activities or methods except for the list() method expect a of
parameters. Parameters are bits of information the GLUE method needs to
perform its function. If more than one parameter is required by a method, they
are separated by commas, i.e. add ($total,1,2)

As an example, one of the simplest methods is status(), which causes a banner-
like message to appear at the bottom of the screen. For example, this script will
print "Hello digital humanists!" whenever it is called, which in this case, is each
time the screen is refreshed:

init="true
[script] status(Hello digital humanists!)

©2007-2011 Bill Ferster / The University of Virginia 3

VisualEyes GLUE Reference

Note that the GLUE did not need an id, since its init was set to "true" nor a from,
since we aren't looking to show a resource, such as an image. When called,
VisualEyes will look at each line of the text script in the order it appears. In this
case, just one line is involved.

1. The first line of this item instructs the VisualEyes to run the GLUE method
each time the screen is refreshed.

2. The second line of this item is the script, and shows the name of the
method (in this case, status) and one or more parameters enclosed in
parentheses (Hello digital humanists!).

3. The third line of this item indicates the end of this method.

©2007-2011 Bill Ferster / The University of Virginia 4

VisualEyes GLUE Reference

Lists

Understanding Variables/Lists

Whether it's a hangover from poorly taught 7th grade Algebra, or just a hard
concept in its own right, the concept of variables is difficult for EVERYONE at
first. It is an abstract way at looking at things that many people, especially
humanists find foreign. In VisualEyes, a variable is called a list.

The bad news first: having a good idea of what we mean by variables in
VisualEyes (we call them lists) is important for being able to make interesting
VisualEyes projects. The good news is that this is a pretty simple concept to
follow, if presented properly, and once you get it, everything else in VisualEyes
will be easier.

Variables Defined

Variables are ways to describe a data element without having to say exactly what
that something's value is. They are called variables because their contents can
vary. They are used to take a concrete thing like a number, a word, or a list of
words, and give it a name to call those items by.

This is useful so we can think about something like a year and not have say it is
1960 or 2010, so we can say things like, "if the year is 1980, show the picture
with the big hair."

So, for example, in a VisualEyes project, a year could be a variable. But that year
could change depending on the data you are working with or the data you want
to display with that year. So you will want to create a list of all of the years you
will want to use and to which you will want to associate your data. Hence, the
year varies because it’s a variable. We call these variables lists.

Lists Are Containers

Here is another way to see how these lists work in managing and displaying
data in VisualEyes:

 Imagine an office with a wall of filing cabinets
made up of many drawers.

 Each drawer has a label on it to identify the
contents within the drawer.

 Each drawer can contain one or many items of
different types.

 Lists are like drawers, because they contain
items we find by looking at the name we gave the
drawer.

©2007-2011 Bill Ferster / The University of Virginia 5

VisualEyes GLUE Reference

Lists are named containers that hold many kinds of items

Just as a drawer can contain papers,
envelopes, and photographs, lists are
containers because they hold one or
more things we want to save, such as a
number, a list of names, a URL, or any
combination of these.

If there was to be just one drawer, we
wouldn't need to label each drawer –
but we can have a number of drawers.
To find the drawer we want, we make
up a name to uniquely identify the
drawer.

Just like naming two drawers with the same name would be confusing, naming
two lists the same name would make it hard to know which one we were talking
about, so the names of each list should be unique.

Lists are named containers that hold many kinds and number of items

To further stretch the “drawers” analogy, the individual
items in a drawer are in folders, numbered from 0 to
however many items are in the drawer. Computers
start numbering their lists at zero rather than one, so
the 1st folder is labeled 0, the 2nd labels 1, and so on.

We find an item in the drawer by telling the drawer's
label and the number of the folder, such as the 5th
folder in the drawer called myDrawer. Needless to say,
it makes sense to put related item in the same drawer.

For example, here are three lists:

 myUrls: a list of URLS

Folder
0 www.manny.jpg

Folder
1 www.moe.jpg

Folder
2 www.jack.jpg

 myNums: a list of numbers

Folder
0

 myWords: a list of words

Folder
0 1776 do you get

Folder
1

Folder
1 1800 it?

Folder
2 1828

Folder
3 1856

©2007-2011 Bill Ferster / The University of Virginia 6

VisualEyes GLUE Reference

VisualEyes Lists

When you write GLUE for your project scripts in VisualEyes, you will use two
types of lists within GLUE items:

 Global lists are set by the program to respond when you click on a
screen element to run an animation, for example, or to move the timeline.
In a GLUE script, global lists are prefaced with two dollar signs ($$).

 Local lists are those that you create yourself to use temporarily to figure
out a date to correlate with a data display, or to join some words together
In a GLUE script, local lists are prefaced with one dollar sign ($).

Using Global Lists

Global list values are automatically set by the VisualEyes application in response
to user actions like clicking on map area or moving the timeline slider, and are
available to all GLUE items in the view.

For example, if you wanted to display the current year below the screen as you
moved along the timeline, the GLUE script would look like this:

status($$curYear)

This script uses the status() GLUE method to display the current year on the
screen.

In the second line of this script, you are calling on the global list, $$curYear. This
global list, $$curYear, contains several dates. The dates will be called upon to
change based on where the user moves along the timeline.

In drawer-speak, VisualEyes has created a drawer and labeled it $$curYear.
Each time the timeline is moved, the item in that drawer, in this case a number
representing the current year, is called upon. When the GLUE item runs, the
status() method looks in that drawer called $$curYear, pulls out the item within it
and writes it on the screen.

Global Lists in VisualEyes

There are a number of global lists that are useful to see what time the timeline is
at and what dot or map feature was clicked on:

$$click Gives the feature index of the clicked on map feature
$$param Gives the index of the currently clicked on a dot
$$now The time in the timeline from 0-1
$$curYear The current year in the timeline
$$curMonth The current month in the timeline expressed as mo/year
$$curDays The current date in the timeline expressed as days +/- 1970
$$zoomBox Coord's of box chosen in by zoom magnifier (left,top,right,bot)

©2007-2011 Bill Ferster / The University of Virginia 7

VisualEyes GLUE Reference

Using Local Lists

If we wanted to move the timeline with the mouse, and rather than display the
year we were over, we wanted to add 10 years to the display (i.e. 1970 would
show as 1980), we would need to make our own local list:

 add($myYear,$$curYear,10)
 status($myYear)

Here we used the add() GLUE method to create a local list called $myYear, and
set its value to the timeline's year ($$curYear) plus 10.

In drawer-speak, we have created a new drawer labeled $myYear. When the
GLUE item runs, the add() method takes the following actions:

1. Looks in that drawer called $$curYear
2. Pulls out the value of the item in the drawer
3. Adds 10 to the value of the item in the drawer
4. Looks in the drawer called $myYear
5. Sets the item in that drawer to the value.

In addition, the status() method:

1. Looks in the drawer called $myYear
2. Pulls out the item
3. Writes it on the screen

Using Lists with many items

The examples of lists we've used so far only had one item in them, but as the
name implies, lists can contain any number of items within them. Being able to
include many items is very convenient, as we can create a script to talk about a
lot of items without having to make a separate list for each one. For example, we
could make a list containing the days of the week like this:

 list($days,Mon,Tue,Wed,Thu,Fri)
 status($days.1)

In drawer-speak, when the GLUE item runs the list() method, the following
actions take place:

1. The list() method creates a drawer labeled $days
2. The list() method adds 5 new folders to the drawer: Mon, Tue, Wed,

Thu, and Fri , respectively. The word Mon placed in the 1st, Tue in the
2nd, etc.

3. The status() method looks in that drawer called $days
4. The status() method pulls out the 2nd item within it (in this case, Tue)
5. The status() method writes Tue on the screen. Remember that

computers start numbering their lists at zero rather than one.

©2007-2011 Bill Ferster / The University of Virginia 8

VisualEyes GLUE Reference

Commenting out lines

You can comment out lines of GLUE script by using /* */ to bracket the area, like this:

 list($myData1,1,1,2,3,4,5,6,7,8,9)
 /* list($myData3,9,9,9,2,2,9,9,9,9,9)
 dataset(myGraph,1,Set two,$myData2) */
dataset(myGraph,2,Set three,$myData3)

Or use // to comment from that point to the end of the line. This is useful for documenting
the script:

 list($myData1,1,1,2,3,4,5,6,7,8,9) // Data set 1
 list($myData2,38,20,37,22,27,30,32,3,36,40) // Data set 2
// list($myData3,9,9,9,2,2,9,9,9,9,9) // Commented out

Special Characters in glue scripts

When you want to use HTML macros within a glue script, you have to be careful about
two characters interfering with the parsing of the script, namely the comma and the right
parenthesis. If you need to put a ")" in a script, use the "~" (tilde) instead, and use "`"
(accent) in place of a ",".

Tables

Accessing individual data elements in a table

Tables are typically accessed by querying the data with a query() method,
but you can access individual elements by specifying them by field. For
example, if we had a resource with the id of "myTable" and a field called
"name", status(*myTable.name) would print a list of all the rows of the
name field on the screen and status(*myTable.name.1) would print the
2nd name (the count starts at zero).

©2007-2011 Bill Ferster / The University of Virginia 9

VisualEyes GLUE Reference

Querying a Table

The process of "asking" a table for certain data is called querying. You do queries all the
time on the web when you conduct a search. For example, when you try to find a movie
in Netflix, you ask the Netflix server to search its table of movies by matching the words
you typed in. Behind the scenes, your search words are sent to the server at Netflix,
which "asks" the database to look through the genre you are in and return the titles of any
films in which all your search words can be found. After a few seconds, Netflix displays
a list of search results. The same process occurs when you search for books at the library
website, Google, and even Apple’s iTunes, which is no more than a simple database.

The Parts of a Query

To conduct a query in VisualEyes, you need three basic pieces of information to
get the data you want from a given table:

1. The name of the table
2. The conditions
3. The desired fields from the source if the conditions are met

1. The name of the table

The name of the table that contains the raw information you want to pick and
choose from. Since any given project might have many tables, to choose
from, you need to specify one of them by giving its name.

2. The conditions

The conditions that need to be met before any rows are retrieved from the
source table. Conditions are statements like, "all the people who scored
below 70" but in a form that the computer can understand, such as "grade LT
70". We take advantage of the structured nature of our data and look at the
"grade" field to return only people who have grades less than (LT) 70.

A single condition like "grade LT 70" is called a clause. Each clause is said to
be true if the condition is met (i.e. the grade is 50) or false if the condition is
not met (i.e. the grade is 80).

Each clause had three parts:

 1) the field to look at
 2) the conditional (i.e. GT, LT, EQ ...), and
 3) the value to compare with: a number, word(s), or another field name.

The conditions can get more specific by adding multiple clauses like any
Boolean search. In our example, "men who scored over 60 and are under 40"
is a condition that translates into three clauses joined by "sex EQ male" AND
"grade GT 60" AND "age LT 40." The AND that separates each clause is
called an operator and says "return rows if both the clauses it is between are
true." Alternatively, we could use the OR operator which says "return rows if
either of the clauses it is between are true."

©2007-2011 Bill Ferster / The University of Virginia 10

VisualEyes GLUE Reference

3. Which fields to return

Your table might have 5 fields, but you may only need to get one, such as the
“name”. To do this, you need to specify which fields to include in the results.
Specifying "name" will return just the name (i.e. Bob), and "name+age" will
return the name and age (i.e. Bob, 22). If you want all the fields, use a star
("*") (i.e. Bob,male,22,100,0).

Queries in VisualEyes

VisualEyes allows you to query locally without needing to send a request to a
server. This is a big advantage in terms of performance over traditional web
queries. In the Netflix example, we had to send a message via the Internet to the
Netflix server, where it searched its database and returned the results back to us
in a message. The query process we use in VisualEyes is modeled after the
standard Boolean queries done by most commercial databases such as SQL,
just simplified.

Queries are done using the query() method in a GLUE item. Just as was outlined
earlier, a query() has three basic parts: the source table; the conditions; and the
desired fields from the source if the conditions are me -- plus the name of a list
to put the results in and how they are ordered.

The form of query is query(resultsID, tableID, fields, conditions, orderBy),
where the results of the query are returned in a resultsID from a table (tableID)
consisting of the fields and rows meeting certain conditions, ordered by a field
name (orderBy).

1. The name of the table
This is the id of the resource that holds the XML table. Assuming we wanted
to load the example we've been working with, you would add a resource to
your view something like this:

 id="myData"
 src="http://www.viseyes.org/data/1-BobTed.xml

Which assigns the name "myData" to the data loaded from the url
"http://www.viseyes.org/data/1-BobTed.xml", making "myData" is the tableID
for the query().

©2007-2011 Bill Ferster / The University of Virginia 11

VisualEyes GLUE Reference

2. The conditions
The conditions determine what rows will be included and contains one or
more conditional clause. Each clause consists of a field name, a condition,
and a value (i.e. name EQ Bob, age LT 30, etc.). Putting a * in the conditions
place will cause all the data in the table to be sent to the list.

These are the following conditionals possible:

 EQ Field is exactly equal to value
 NE Field is not equal to value
 LK Field contains the value with its string (like)
 NL Field does not contain the value with its string (not like)
 LT Field is less than to value
 GT Field is greater than the value
 LE Field is less than or equal to value
 GE Field is greater than or equal to the value

The LK (like) conditional is a "fuzzier" search, used to find the occurrence of a
word in an item, regardless of case. For example, "name LK bo" would return
Bob's row. If the field contains multiple values, separated by a ; (semi-colon),
each value will be searched and items that match will be included in the
search results. For example, if Bob was in both classes, the class field would
be "1;2", and our condition looked for people in class 1 (i.e. "class EQ 1") ,
Bob's row would be included in the results.

For example, if we wanted to know all the people who scored below 70, the
conditions would be "grade LT 70”. Individual clauses may be joined by AND
or OR operators to create more sophisticated queries, such as "grade GE 70
AND sex EQ men" if we wanted to know all the men who scored greater than
or equal to 70.

Conditionals test on numeric order, which works well with numbers, but not
dates. The clause date GT 1/12/1800 will incorrectly return a row dated
6/12/1700, because 6 comes after 1. To overcome this, you can tell the
query() method to treat the fields as dates by prefixing the date: to the field
and test, like this: date:date GT date:1/12/1800.

3. Which fields to return
To specify which fields within a row are added to the results, set an individual
field name (ie. "name"), two or more fields, separated by a + sign (i.e.
“name+age”), or a * (star), which will return all the fields on rows where the
conditions are met.

4. List to hold the results
We need a place to put the results of our query. The resultsID can be an
existing list, or query() will create one if it doesn’t exist. We would then use
this list to fill an information box, or any other data display option.

If you are only looking for one field (e.g. field="name") all items matching your
conditions will be returned in the list (e.g. "Bob,Alice"). If multiple fields are
selected (e.g. field="name+age"), only the first match is chosen and all the
desired fields in that match are returned (e.g. field= Bob,22").

©2007-2011 Bill Ferster / The University of Virginia 12

VisualEyes GLUE Reference

5. What order
Finally, you can specify what order the rows are placed in the list by
specifying the name of the field to order them in ascending order. Putting a 0
in will not order them. Putting a minus sign before the field (i.e. "-age") will
sort the rows in descending order.

6. The results
The results are a list of items that your query found. This is usually in the form
of a list object, but you can also provide a field in another trable to capture
the results by providing the table's name and the field within it you want to fill
with the results of the query. Add a star, the table name a dot and the field
name like this: *myTable.age would fill the age field in the myTable table
with the results from the query.

Some Query Examples

Using this simple table, called
"myData", let's work out some
queries to pull out some specific
items from it.

All examples assume we will place

their results in a list called $results, order the results by class and use the
following resource to load the table from the VisualEyes server.

name sex age grade class
Bob male 22 100 1
Ted male 43 40 2
Carol female 33 90 1
Alice female 23 75 2

<resource id="myData" src="http://www.viseyes.org/data/1-BobTed.xml>

 Find all Males

query($results,myData,name,sex EQ male,class)
status($results)

Results are: Bob,Ted

 Find all people younger than 40

query($results,myData,name,age LT 40,class)
status($results)

Results are: Bob,Carol,Alice

 Find a man older than 40 that passed

query($results,myData,name+age+score,sex EQ male AND age GT 40 AND score GT
70,class)
status($results)

Results are: Bob,22,100

©2007-2011 Bill Ferster / The University of Virginia 13

VisualEyes GLUE Reference

GLUE METHODS REFERENCE

The following GLUE methods are available. They are functionally listed below, followed
by an alphabetical list. Be sure and include ALL parameters shown in the documentation.

List Management

copy (dest,source) Copy one list to another
list (dest,a,b,c...) Create a new list
listfill (dest,source,match,default) Fill a list with matching
listjoin (dest,source) Join two lists together
listmerge (dest,source,spacer) Merge a list into a single string
listnum (num,list) Find number of members in a list
listsplit (source,separator) Add members to list that have separator
lookup (dest,source,find,deliver) Lookup table
segment (dest,source,slots,values) Sort list data into categories
select (source,result,which) Select member of a list
set (dest,source) Set data in a list or resource
tweenlist (dest,from,to,percent,eases) Animate between two lists

String Management

datetodays (days,date) Convert a date to number of days
daystodate (date,days, format) Convert number of days to a date
join (dest,str1,str2, ...) Join multiple strings together
replace (infobox,search,replace) Search and replace
replaceword (infobox,words) Replace $$ holder with text in infobox
split (source,dest,separator) Split word(s) by a character or word

Math

abs (result,source) Absolute value of a number
add (result,num1,num3) Add two numbers
ceil (num) Get ceiling
div (result,dividend,divisor) Divide two numbers
inc (result) Increment value by one
floor (num) Make number integral
max (result,num1,num2) Find maximum of two numbers
min (result,num1,num2) Find minimum of two numbers
mod (result,num,divisor) Get modulo remainder of a number
mul (result,num1,num2) Multiply two numbers
random (result,min,max,integer) Get a random number
round (result) Round a number up
sqrt (result,num) Find square root of a number
sub (result,num1,num2) Subtract two numbers

©2007-2011 Bill Ferster / The University of Virginia 14

VisualEyes GLUE Reference

Statistics

average (result,list) Calculate mean average
stdev (result,list) Calculate standard deviation
correlate (result,list1,list2) Calculate Pearson-style correlation

Logic

call (glue) Call another glue item
if (var,conditional,value,lines) Conditional
repeat (lines) Repeat line(s) in script
setview (view) Make a view active

Data Management

bandfill (display,datares,num) Add dots to a band
dataset (display,setnum,legend,data) Set a display's data set
datatime (graph,time) Shows a portion of a graph's time
dotfill (display,data) Add dots to a path or map display
featureid (map,idlist) Replace ids in vector map
filldocviewer (viewer,title,data) Set text to display in docview display
linefill (line,data) Adds lines to a path or map
normalizegraph (graph,max) Normalize a chart's data 0-n
query (result,table.fields,conds,order) SQL-like query on a table
routefill (path,data) Add routes to a pathway
setdot (path,bandnum,dotnum,field,val) Set a dot's attribute
table (action,table,row,field,val) Set elements of a table resource
timerfill (timer,data) Add trigger dots to timer widget

Everything else

dissolve (in,out,start,end,dur) Dissolve between 2 resources
gototime (days) Set timeline's time
highlight (infobox,start,end,col) Highlight a text line in an infoBox
link (url,target,param) Open a url in a new browser window
menuitem (control,title,glue,value) Set control panel item attributes
move (res,sx,sy,sx,ex,ey,ez,timing,ease) Move or animate a resource
movie (player,command,value) Control a movie
play (start) Start the timeline playing
radioshow (select,opacity,resources) Show one of several resource
refresh (resource) Redraw a display
setatt (element,attribute,value) Set element's attribute
setimage (image,src,overview) Change the source of an image
setview (view) Change the current view
show (resource,opacity) Change the opacity of a resource
status (message) Display a message under the screen
tween (field,start,end,time,ease) Animate between two values over time

©2007-2011 Bill Ferster / The University of Virginia 15

VisualEyes GLUE Reference

abs Absolute Value

abs(result, num)

This method takes the absolute value (ie. positive numbers only) of source and places
the result in the list called dest. If dest list does not exist, it is created.

result Name of list to store result
num Number to abs

abs($age,$age)

add Add two numbers

mul(result, num1, num2)

This method adds num1 and num2 and places the result in the list called result (i.e
result=num1+num2).

result Name of list to store result
num1 Number to add
num2 Number to add

add($tot,$age,10)

 average Average (mean) of a list

average(result, data)

This method averages numbers in data and places the result in the list called result..

result Name of list to store result
data List of number to average

average($avg,$myList)

©2007-2011 Bill Ferster / The University of Virginia 16

VisualEyes GLUE Reference

 bandfill Add dots to a timeview or shelf band

bandfill(path, dataRes, bandNum, [start])

This method will fill a container object, such as a path or concept with dot data from a
data source (i.e. an XML file, or table resource). See the dot specification for more
information. The bandNum specifies which band to load. By default, dots will be
added to the dots already in the timeview or shelf, making it convenient to specify the
first dot, and letting the table to be loaded only have the dot attributes that change,
since they will be inherited from the first. Setting the start parameter to "1" will leave
the first dot as is and fill beyond it.

path ID of timeview display
dataRes ID of resource where data are
bandNum Number of band to fill
start Dot number to start filling path at (optional)

bandfill(myTimeView,myData,0)

 call Call a GLUE method by name

call(glue)

This method will call a GLUE method, like a subroutine.

glue ID of GLUE method to call

call(myGLUE)

 ceil Ceiling a number

ceil(num)

The ceil method returns the ceiling value (highest integer) of num and places in num.

num Number to be ceiled

ceil(123.456)

 copy Copy one list contents to another

copy(dest, source)

This method will copy a member or members from one resource or list to another. If
the dest is prefaced with "$$";, a global list will be created if it doesn't already exist,
whose scope is beyond the current GLUE script.

dest ID of list to or resource to copy to
source ID of list to or resource to copy from

copy($to,$from)

©2007-2011 Bill Ferster / The University of Virginia 17

VisualEyes GLUE Reference

 correlate Correlation of two lists

correlate(result, data1, data2)

This method performs a Pearson's product-moment coefficient of correlation between
numbers in data1 and data2 and places the result in the list called result.

result Name of list to store result
data1 List of numbers in data set 1
data2 List of numbers in data set 2

correlate($cor,$myList1, $myList2)

 dataset Add a row of data to a graph

dataset(graph, set, legend, dataRes)

This method adds a row of data to a graph. If the set number is set to clear, all the sets
will be removed from the graph.

graph ID of graph
set index of dataset
legend Name of legend
dataRes ID of resource where data are

dataset(myGraph,2,Sales,$mydata)

 datatime Set percentage of graph to display

datatime(graph,time)

This method controls how much of a graph to show, to help make charts that grow
over time. The time parameter goes from 0 to 1.

graph ID of graph
time Amount to show (0-1)

datatime(myGraph,.5)

 datetodays Convert date to days

datetodays(days, date)

This method will convert a date expressed as a year, month/year, or day/month year
(separators can be \ - / or ;) into a single number representing the number of days
+/- of January 1, 1970 1/1/1980 would convert to 3650 and 1/1/1960 would be -3650.

days ID of list to put days into
date Days

datetodays($days,1/1/2009)

©2007-2011 Bill Ferster / The University of Virginia 18

VisualEyes GLUE Reference

 daystodate Convert days to date

daystodate (date, days, format)

This method will convert the number of days +/- of January 1, 1970 into a readable
date in the form described by format (dy/mo/yr, mo/yr, yr, mo/dy/yr).

date ID of list to put date into
days Days
format Date format

daystodate($date,3650,mo/yr)

 dissolve Dissolve between two resources

dissolve(in, out, start, end, dur)

This method will dissolve between two resources. Times are expressed as 0-1, with
one being the length of the timeline and 0 its start.

in ID of incoming resource
out ID of outgoing resource
start Start time of outgoing res (0-1)
end Start time of incoming res (0-1)
dur Duration of dissolve transition (0-1)

dissolve($pic1,pic2,0,.5,1)

 div Divide

div(result, num1, num2)

This method divides var1 by var2 and places the result in the list called result
(i.e result =var1/var).

result ID of list to store result
num1 Number to be divided
num2 Number to divide

div($pct,$sum,100)

©2007-2011 Bill Ferster / The University of Virginia 19

VisualEyes GLUE Reference

dotfill Add dots to a path

dotfill(path, data, [start])

This method will fill a container object, such as a path or concept with dot data from a
data source (i.e. an XML file, or table resource). See the dot specification for more
information. By default, dots will be added to the dots already in the path, making it
convenient to specify the first dot, and letting the table to be loaded only have the dot
attributes that change, since they will be inherited from the first. Setting the start
parameter to "1" will leave the first dot as is, clear all dots beyond it, and fill from
the second dot. Setting the start parameter to "0" will clear out all existing dots, and
then fill from the start.

path ID of path
dataRes ID of resource where data are
start Dot number to start filling path at (optional)

dotfill(myPath,myData)

featureid Replace ids in a map

featureid(mapID, idList)

This method will replace the id attribute of each of the features in a map resource
with a list specified by the idList parameter.

mapID ID of map resource
idList List of map ids to replace

featureid(myMap,$ids)

 filldocviewer Fill document viewer with data from a data source

docfillviewer(viewerID, title, dataID)

This method will fill a document viewer object with data from a data source (i.e. an
XML or CSV file). You can select a specific item in the data source by setting the
title parameter in the GLUE call to the number prefaced with a # sign (i.e. #32).

vewerID ID of viewer
title Name title page to fill
dataID ID of resource where data are

docfillviewer(myDocViewer,Title of it,myData)

©2007-2011 Bill Ferster / The University of Virginia 20

VisualEyes GLUE Reference

 floor Round up number

floor(num)

The round method returns the rounded value of num and places the back in num.

num Number to be floored

floor(123.456)

 gototime Move timeline to a time

gototime(days)

This method will cause the timeline to go to the date specified in when, the number of
days +/- of January 1, 1970. If you set days to a number between 0 and 1, it will be
interpreted as the percentage of the timeline (i.e. .33 would move the timeline 1/3 of
the total length.

days When to go on the timeline

gototime(4000)
gototime(.5)

 highlight Highlight an infobox/docviewer text line

highlight(infoxbox, start, end, col)

This method will highlight a line or lines(s) in an infoBox or a docViewer with a
transparent colored bar. Setting the start to -1 will remove the highlight.

infobox ID of infobox to highlight
start Line in text to start highlighting
end Line in text to start highlighting
col Color of highlight"

highlight(myInfoBox,$s,$e,0x990000

 if If statement

if(var1, condition, var2, lines)

This method will execute the number of lines specified if condition between var1 and
var2 is met. The if method tests on numeric order, which works well with numbers,
but not with dates. if(6/12/1800,GT,1/12/1800,1) will run true because 6
comes after 1. To overcome this, you can tell the if() method to treat the fields as
dates, by prefixing the date: to the field and test, like this:

if(date:6/12/1800,GT,date:1/12/1800,1)
NOTE: There is no space between "if" and "(" !

var1 Test 1

©2007-2011 Bill Ferster / The University of Virginia 21

VisualEyes GLUE Reference

condition Condition (GT, LT, EQ NE, LE GE,LK,NL)
var2 Test 2

if($age,EQ,34,2)

 inc Increment by one

inc(num)

This method increments the number in the list called num by one. (i. e. num=num+1)

num ID of list to increment

inc($count)

 join Joins multiple strings together into one

join(dest, str1, str2, ...)

This method will join any number strings together return the combined list into dest.

dest ID of list hold combined strings
str1 1st string to combine
...
strN Last string to combine

join($dest,$first,$second,A 3rd literal)

 linefill Fill lines via table

linefill(line,data)

Fill lines from a data table

line Name of line object to fill
data Name of data table

linefill(myLine,myData)

 link Open a new web page

link(url, target, clickParam)

This method will cause a webpage to open. The "http://"; portion of the URL is not
required. You can specify the name of a list method in place of a URL, in which case,
the URL name can respond to a click, say from a path object. Target sets where the
page will open, which can be set to the frame's name or the preset values of _blank,
_self, _parent, or _overlay.

©2007-2011 Bill Ferster / The University of Virginia 22

VisualEyes GLUE Reference

The clickParam will cause the current click parameter (0 if none) to be appended to
the url as ?id=# (or & id=# if there is a name=value pair already there). When a map
is clicked on, the feature number associated with the feature clicked on will be
available to methods that support the clickParam option, such as the link method.

url Full URL of page to load, or ID name of list
target browser window or frame (_self, _blank or _overlay)
clickParam If set to true, ?id= will be added to url
link(www.mysite.org,_blank,false)

 list Creates a new list of items

list(val1, val2, ... valN)

This method will create an array of elements (numbers, colors, or strings) under a
named id for use in other methods. It can also create an array with only 1 element, for
use as a variable. All lists is names are preceded by a dollar sign (i.e. $myList) Global
lists (meaning their scope is view-wide) are preceded by 2 dollar signs (i.e. $$gList).

listID Name of list l($+name=local, $$+name=global)
val1 Element to add to list
val2 Element to add to list
... Any number of elements
valueN Element to add to list

list($years,1865,1866,1877,$id,$$param)

 listfill Copy values to a list

listfill(dest, source, match, default)

This method sets any values in a list called dest whose index appears in a list called
source to the value specified in matchVal. All those not specifically in source would
be set to the default value.

dest Name of list to store result
source Name of list
match Value to set matching indices in dest to
default Value to set all other indices in dest to

listfill($a,$b,yes,no)

 listjoin Joins lists together

listjoin(dest,source)

This method will join the second list to the end of the first list and return the
combined list in the first parameter.

dest Name of first list to combine
source Name of second list to combine

listjoin($first,$second)

©2007-2011 Bill Ferster / The University of Virginia 23

VisualEyes GLUE Reference

 listmerge Joins member of a of a list into one items

listmerge(dest, source, spacer)

This method will join the separated members of a list separated by any spacer set and
return that string in the first parameter.

dest Name of list to store combined
source Name of list
spacer Value to between entries

listmerge($joined,$separate,)

 listnum Get length of list

listnum(num,source)

This method puts the length of the source list into the dest list to get the number of
members is holds. If dest does not exist, it is created.

num ID of list to place count in
source ID of list to count members of

listnum($num,$myList)

 listsplit Split list members by token

listsplit(source,separator)

This method will look at each member of source list, and if it contains the separator,
the member will be split and added as a new member of the list.

source ID of list
separator String Separator character or string

listsplit($myList,|)

 lookup Look up value in table

lookup(result, source, find, deliver)

This method will search for a value in a table's field, and return a different field on
the same row of that table.

©2007-2011 Bill Ferster / The University of Virginia 24

VisualEyes GLUE Reference

result Name of list to store result
source Name of list or resource data
find Field in data set to search in
deliver Field in data set to return

lookup($t,Lincoln,myTable,name,age)

max Find maximum of two numbers

max(result, num1, num2)

This method compares num1 and num2 and places the largest in the list called result.

result Name of list to store result
num1 Number to be compared
num2 Number to be compared

max($biggest,$sum,100)

 menuitem Change control panel item

menuitem(control, title, glue, value)

This method will change an item in a control panel to a new title, GLUE or value.
Setting a parameter "undefined" keeps its old value.

control ID of control panel item
title String
glue String
value String | Number

menuitem(myCheckBox,A new title,undefined,true)

 min Find minimum of two number

min(result, num1, num2)

This method compares num1 and num2 and places smallest in the list called result.

result Name of list to store result
var1 Number to be compared
var2 Number to be compared

min($smallest,$sum,100)

©2007-2011 Bill Ferster / The University of Virginia 25

VisualEyes GLUE Reference

move Move a resource over time

move(resource, startX, startY, startZ, endX, endY, endZ, timing, eases)

This method will move a resource over time. If the timing is set to 0, the resource will
always be positioned at the starting positions specified. An id of screen can be use to
move entire screen

resource ID of resource or ""screen""
startX Starting horizontal position
startY Starting vertical position
startZ starting zoom percent
endX Ending horizontal position
endY Ending vertical position
endZ Ending zoom percent
timing ID of timing source (i.e. timeline, var, 0)
eases Motion slows (0=none1=start 2=end 3=both)

move($myPic,100,200,100,200,300,150,$$param,3)

 movie Control a movie resource

movie(player, command, value)

This method will control a movie resources transport functions such as play or stop.
Current movie commands are 1.) play - The param is the time in seconds to start
playing the movie from. 2.) stop, 3.) seek - The param is set to the time in seconds to
cue the movie to. 4.) time - The param the name of the list to store the current time in
seconds. 5.) start - The param is the time in seconds of movie’s start time. 6.) end -
The param is the time in seconds of movies end time. 7.) load - The param is the
src/path of the movie to load.

player Name of movie to control
command Command to send to player
value Value to send to player

movie(myMovie,play,12)

 mod Modulo

mod(result, num, divisor)

©2007-2011 Bill Ferster / The University of Virginia 26

VisualEyes GLUE Reference

This method multiplies gets the modulo (remainder) a number into result (i.e
result=num%divisor).

result Name of list to store result
num Number to multiply
divisor Number to divide by

mod($thisDay,$totalDays,7)

 mul Multiply

mul(result, num1, num2)

This method multiplies num1by num2 and places the result in the list called result
(i.e result=num1*num2).

result Name of list to store result
num1 Number to multiply
num2 Number to multiply

mul($tot,$age,10)

 normalizegraph Normalize a graphs data

normalizegraph(graph, max)

This method will set the status of a graph set by graphID to plot the data as raw
numbers by setting max to 0 (its default condition) or normalize the data from 0 to the
number set by max, typically 100. This is useful when trying to compare datasets with
wildly different ranges.

graph ID of graph
max Maximum value of Y axis

normalizegraph($myGraph,100)

 play Start the timeline playing

play(startTime)

This method will cause the timeline to play from the time specified in startTime. It is
the same as if you dragged the timeline slider with the mouse and clicked the play
button.

startTime Starting time

play(1/1/1780)

©2007-2011 Bill Ferster / The University of Virginia 27

VisualEyes GLUE Reference

query Queries a data set and returns results in a list

query(result, tableRes ,fields, conditions, orderBy)

This method works in a similar fashion to a SQL query on a table, but performs
conditional searches on data contained in a resource called tableRes that is in
row/column format. The results are placed in a new list specified by results. You can
specify the fields to include using the fields id. A * will include all fields. Multiple
fields are set by separating them with plus signs. The conditions are similar to SQL
WHERE conditions, with AND indicating "AND" and "OR" indicating OR. Possible
operators are EQ, NE, GT, LT, LE, GE, LK, NL, (like/not-like).

Conditionals test on numeric order, which does not work with dates. The clause date
GT 1/12/1800 will incorrectly return a row dated 6/12/1700, because 6 comes
after 1. To overcome this, tell query() to treat the fields as dates by prefixing the
date: to the field and test, like this: date:date GT date:1/12/1800.

The result attribute can be a list, table field, or a table with multiple fields. A list (i.e.
$myList) and a table field (i.e. *myTable.field) can only contain one field,
but you can fill a table with multiple fields by specifying a table with no field defined
(i.e *myTable) and whatever fields that are defined in the fields attribute will be
copied (in that order) into the fields of the table. Be sure to pay attention to the order,
so the right field in the tableRes ends un in the result table.

result ID of list where results are placed
tableRes ID of resource where data are
fields Fields to include, separated by a + sign, or * for all
conditions Inclusion conditions, separated by AND or OR
orderBy Field to order row results by (0=none, add - for reverse sort)

query($myList,myData,year+county,year GT 1847 OR county NE LA)

random Get a random number

random(result, min, max, integer)

This method returns into result a random number between min and max. If integer is
set to "true", no decimal places will be added.

result Name of list to store result
min Minimum number
max Maximum number
integer I

random($num,0,100,true)

©2007-2011 Bill Ferster / The University of Virginia 28

VisualEyes GLUE Reference

 radioshow Select one resource from several

radioshow(select, opacity, resources)

This method acts like a radio button, and sets the visibility of a list of resources such
that only one is visible at any given time. The selected resource can be rendered fully
transparent (opacity=0) to fully opaque (opacity=100) or any point in between. All
others are hidden. Setting select to 0 hides them all. The select can also reference an
ID of a list. When using radioshow to select between dot object, use the word dot the
resources list.

select Which resource index to select (0-n)
opacity Opacity of resource 0-100
resources ID of list of resource IDs

radioshow(3,60,$list)

 refresh Show resource and redraw

refresh(resource, [param])

This method will cause the resource identified to be re-drawn. Some elements can
pass a parameter to the refresh, such as time, or item to highlight. This is optional and
currently used in the shelf resource to highlight a particular dot within the shelf.

resource ID of resource
param Optional

refresh(myPic)

 repeat Repeat lines in script

repeat(times)

This method will repeat the script lines between the first time it is called with a
number (the number of times to repeat) and the second time it is called with 'end' as
its parameter (no quotes!). Useful for looping things, as a traditional do or for loop in
programming .A new list called $ix will be created and set to 0 at the start, and each
time the script is repeated, that number will increase by one, making it easy to iterate.

times Number of repeats or end

repeat(4) - or- repeat(end)

©2007-2011 Bill Ferster / The University of Virginia 29

VisualEyes GLUE Reference

 replace Replace words

replace(infobox, search, replace)

This method looks at some text and replaces an occurrence of search with a word or
words identified by replace.

infobox ID of infobox
search Value to look for
replace Value to replace it with

replace(myBox,jump,howfar)

 replaceword Replace symbols with words

replaceword(infobox, words)

This method looks at some text and replaces special symbols with a word or words.
The symbols such as $$1, $$2, etc., where the $$ identifies it as a symbol and the
number following it says which one in the list it should be replaced with. The
replacement parameter is the ID of a list of replacement word or words. $$1 would be
replaced by the first member in the list, $$2 would replace the second member, etc.

infobox ID of infobox
words List of replacement values

replaceword(myBox,$words)

 round Round a number up

round(source)

This method returns rounded up of source and places the result back in to source.

source Name of list to store result and the

round(123.456)

 routefill Add routes to a path via a data element

routefill(path, dataRes)

This method will fill a container object, such as a path or concept with route data
from a data source (i.e. A an XML file, or a SQL database query). The data source
must contain the start, end, and pathway fields.

path ID of path
dataRes ID of resource where data are

routefill(myPath,myData)

©2007-2011 Bill Ferster / The University of Virginia 30

VisualEyes GLUE Reference

 segment Sort data via filters and values

segment(dest, source, slots, values)

This method will sort data into a number of preset categories and use those as criteria
to create a new list. The slots contains a list of numbers that sets the ranges, and
values (which must have the same number of items as slots) contains the values to
use. The source points at a list of data to compare against the slots, and the dest is
where the converted list goes. If the source contains multiple items, the each item
will be converted and placed in the dest list. For example suppose we wanted to show
some text when certain dates are reached. (i.e. "1968" will yield "The Sixties".) The
timeline changes the year, which is reflected in the $$curYear global.

1. Making a list called $slots like this: list($dates,0,1950,1963,1975) sets up 4
date ranges: before 1950, 1950 to 1963, 1963 to 1975 and past 1975.

2. When a year is in one of those ranges, we want to display the era, so we set up
an list of values like this: list($eras,The War Years,Happy Days,The
Sixties,Modernity).

3. This call: segment($name,$$curYear,$dates,$eras) will look at the current
year, decide which slot it is in and put the era's name in $name.

dest ID of destination data resource
source ID of source data resource
slots ID of list of slots data
values ID of list of values to assign segmented data

segment(myData.pop, myMap.col, $slots, $colors)

 select Copies the nth member from source to the result

select(source, result , which)

This method selects one member of a source list based on the first member of a which
list and places it in the result list. NOTE: the result parameter must be a regular (not
global) list. Alternatively, if you want to used select() to find a member of a list, you
can set which to one of the member rather than a number, and the index of that
member in the source list

source ID of list of values to select from
result String of list where selection is placed (or index)
which Selection number (or source member to find)

select($choices,$result,5) returns NYC
select($choices,$result,NYC) returns 5

©2007-2011 Bill Ferster / The University of Virginia 31

VisualEyes GLUE Reference

set Copy a list element

set(dest, source)

This method copies srcID and places the result in the list or resource called destID.

dest Name of list to store result
source Name of source

set($b,$a)

setatt This method will set an attribute of an element

setatt(element, attribute, value)

Set an element's attribute. If you are trying to access an element within another
element, such as a frame, use a dot to separate the sub-element's attribute in the
attribute. For example: setatt(myGraph,frame.backCol,0x990000).

element ID of element
attribute Name of attribute to set
value Value of attribute to

setatt(myElement,src,$$param)

setdot Set a dot's attribute

setdot(path, bandNum, dotNum, field, value)

This method will set a field (attribute) of a dot in a path or TimeView band.

path ID of path or timeview band
bandNum Number of band (if in a TimeView)
dotNum Number of dot to set
field Name of dot field to set
value Value to dot field to

setdot(myPath,0,5,col,$$param)

setimage Change an image source

setimage(image, src, overview)

This method will cause a new image to be loaded into an existing image resource. If
overview attribute is set to true, the overview's image is loaded to src as well.

image ID of image resource
src URL of image to load
overview Load overview (true or false)

setimage(myImage,http://www.mypic.jpg,true)

©2007-2011 Bill Ferster / The University of Virginia 32

VisualEyes GLUE Reference

 setview Show a named view on the screen

setview(view)

This method will cause the view identified to be drawn. If the view is invisible, it will
be drawn in the current view, otherwise the tabs will change to that view

view ID of view

setview(myView)

 show Show resource with alpha set

show(resource, opacity)

This method sets the visibility of a resource. The resource can be rendered fully
transparent (opacity=0) to fully opaque (opacity=100) or any point in between.

resource ID of resource
opacity Opacity of resource 0-100

show($myRes,100)

 split Split by token

split(dest, source, separator)

This method splits a string in parts separated by some letter or letters, and places the
result in the list called destID.

dest Name of list to store result
source String to be split apart
separator Letter(s) that separate things to be split

split($t,Split by colons,)

 status Prints a message on screen

status(message)

This method prints a message in the status area at the bottom of the screen.

message Message to show

status(Double click to see)

©2007-2011 Bill Ferster / The University of Virginia 33

VisualEyes GLUE Reference

stdev Standard deviation of a list

stdev(result, data)

This method calculated the standard deviation of numbers in data and places the
result in the list called result..

result Name of list to store result
data List of number to average

stdev($sd,$myList)

 sqrt Square root

sqrt(result, source)

This method takes the square root of source and places the result in the list called
result. If result list does not exist, it is created.

result Name of list to store result
source Number to take square root of

sqrt($num,$age)

 sub Subtraction

sub(result, var1, var2)

This method subtracts var1 from var2 and places the result in the list called result ,

result Name of list to store result
var1 Number to subtract
var2 Number to subtract from

sub($tot,2,100)

©2007-2011 Bill Ferster / The University of Virginia 34

VisualEyes GLUE Reference

 table Modify a table

table(action, table, row, field, value)

This method will modify the contents of a table resource. There are three possible
actions: addrow, which adds a row, set, which set's the value of an item, and sort,
which sorts the table by a field. Row numbers start at 0.

addrow: If you put in -1 as the row, it will add a new row to the end of the table,
otherwise it will put it at the specified row. The field parameter should be a list of
field values you want to add to that row.

set: The row parameter sets the row you want to change, field is the field name, and
value is the value you want to set the item to. If you put in -1 as the row, the field
name in all the rows will be filled with value.

sort: Set field parameter to the field to sort by. Putting a -1 in the value parameter will
sort in descending order instead of ascending.

empty: This option will empty the data from all the fields, like starting afresh.

action Table action to perform: addrow|set|sort
table ID of table to modify
row Number of row
field Field(s)
value Value of data (set action)

table(addrow,myTable,-1,$data,0) adds new row at end
table(addrow,myTable,4,$data,0) adds new row at row 5
table(set,myTable,4,name,smith) sets name field at row 5 to "smith"
table(sort,myTable,0,age,-1) sort table by "age" field in descending order
table(empty,myTable,0,0,0) empty table

 timelinelabels Add timeline Data Labels

timelinelabels(dates, labels)

This method will add labels for a timeline. Add a list of dates and a list of labels to
show at each date

dates ID of list of dates
labels ID of list of labels

timelinelabels($myDates,$myLabels)

©2007-2011 Bill Ferster / The University of Virginia 35

VisualEyes GLUE Reference

©2007-2011 Bill Ferster / The University of Virginia 36

 timerfill Fill timer dots via table

linefill(line,data)

Fill timer trigger dots from a data table. The table must contain the time and glue
fields and they need to be in ascending time order.

time Name of time widget to fill
data Name of data table

timerfill(myTimer,myData)

tween Animate a resource field over time

tween(field, start, end, timing, eases)

This method will set a resource field to some position over time. If the timing is set to
0, the resource will always be positioned at the starting positions specified.

field ID of resource
start Starting position
end Ending position
timing ID of timing source (i.e. timeline, var, 0)
eases Motion slows (0=none1=start 2=end 3=both)

tween(myPic.rot,100,200,$$param,3)

 tweenlist Animate between two lists

tweenlist(dest, from, to, percent, eases)

This method will set a list to tween between two other lists over time.

dest Name of list to store result
from Name of list to tween from"
to Name of list to tween to
percent Number Percent of tween (0-1)
eases Motion slows (0=none1=start 2=end 3=both)

tweenlist($myList,$list1,$list2,$$now,3)

