

VisualEyes Project Guide
8/30/11

VisualEyes is a web-based authoring tool
developed at the University of Virginia to weave
images, maps, charts, video and data into highly
interactive and compelling dynamic visualizations,
and seamless access to other web applications
such as Google Earth.

VisualEyes enables users to present selected
primary source materials and research findings
while encouraging active inquiry and hands-on
learning among general and targeted audiences.
It communicates through the use of dynamic

displays - or “visualizations” - that organize and present meaningful information in both
traditional and multimedia formats, such as audio-video, animation, charts, maps, data, and
interactive timelines.

Users can view preset collections of events as well as construct their own views of the events
based on selected criteria. The effective use of the visualizations can reveal and illuminate
relationships between multiple kinds of information across time and space far more effectively
than words alone.

About this guide

This project guide is intended to serve as the overall documentation associated with VisualEyes.
The main sections of the document will follow the order in which the aspects of VisualEyes are
introduced in the following section How VisualEyes Works. It is the intention that through the
reading of this manual one will be able to learn how to create a project in VisualEyes. For this
reason, the manual will refer frequently to the Project Sampler, a collection within VisualEyes
itself of examples of various features that includes instructional screen-casts.

There are two other reference documents: The VisualEyes XML Reference Guide which
provides details on the elements available for use in projects and their attributes; and the
VisualEyes GLUE Reference Guide, which provides details on using GLUE scripts for advanced
interactivity.

Also available is the VisualEyes Tutorial, which is a step-by-step instructional manual designed
around a specific project, the may chose to take the tutorial if you prefer that style of learning;
however, it is the intention that you will be able to learn how to use VisualEyes by reading this
document alone.

We encourage you to look at the various projects on our website to get a feel for the kind of
projects that have already been made using VisualEyes.

http://www.viseyes.org/VisualEyeXMLRef.pdf
http://www.viseyes.org/VisualEyeXMLRef.pdf
http://www.viseyes.org/Tutorial.pdf
http://www.viseyes.org/

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 2

Table of Contents

HOW VISUALEYES WORKS 4

Views 4
Resources 5
Controls 5
Displays 6
GLUE 6
Elements and Attributes 7
Project Sampler 8
A note on the formatting in this guide 8

GETTING STARTED WITH VISEDIT 9

Creating an account and logging in 10
Navigating the element tree 10
Navigating the attribute editor 10
File, Edit and Tool Menus 11
Using Wizards 12
Viewing your project 12

CREATING VISUALEYES PROJECTS 13

The structure of a project 13
FRAME ELEMENT 14
TEXTFORMAT ELEMENT 14
LOGO ELEMENT 14
TAB ELEMENT 15
VIEW ELEMENT 15

RESOURCES 16

Common resource attribute tags 16
IMAGE RESOURCE 17
MOVIE RESOURCE 18
MAP RESOURCE 19
XML RESOURCE 20
TABLE RESOURCE 21

CONTROLS 22

CONTROL PANEL 22
TIMELINE 24
ZOOM CONTROL 27
OVERVIEW 28

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 3

DISPLAYS 29

INFOBOX 29
DOCVIEWER 30
PATH 31
Using paths as selectors and menus 32
DOT 33
CONCEPT MAP 34
PICTURE MAP 35
DOCK DISPLAY 35
TIMEVIEW 36
NETWORK / ORGANIZATION MAP 39

CHARTS AND GRAPHS 40

Charts 40
Scatter / Bubble charts 41
Pie chart 41
Radial bar chart 41
Xaxis / yaxis 42
Legend 42
Marker 42
Linestyle 43
Adding Data to Charts 43
WIDGETS 44

VISUALEYES USER GUIDE APPENDIX 48

Formatting infobox and docviewer text 49
Icon types 52
Working with structured information 54
XML Data Format 58
Web Table Data Import 58
Sharing Your Project with Others 59
Embedding VisualEyes Projects in Web-pages 59
Finding URLS of Flickr Images 60
Using Google Earth 61
Geo-Referencing Maps and Images 62
Geo-referencing dot sizes 63
Using Google Docs to Store Data 64
Table resource 65
Accessing individual data elements in a table 65
VisEdit Options 67
VisEdit Options 67
Data Import from Many-Eyes 68
Upload XML Project File Directly 68
Converting AI Files to XML 69
Using invisible views 70
The persistence of dot attributes 71
Using Resource Pointers 71
Debugging tips 72

VisualEyes Project Guide

How VisualEyes works

VisualEyes is a Flash-based authoring system that uses the Internet to connect various
resources, such as images, maps, video and data together in a seamless interactive
presentation. It is a “virtual Lego set” containing an number of features.

A VisualEyes project consists of information and images (resources) assembled into what are
called views. The views are customizable and interactive, enabling users to change how the
various resources interact (using controls). Often these views use a special scripting language,
called GLUE to control the appearance and disappearance of various elements.

Views

Each VisualEyes project is divided into a number of views, with each view existing in a
separate tab, accessible at the top of the window. Clicking on any of the tabs will bring
up a different view.

Each view displays the resources, or
images and data, that make up the
project. The resources in a view can
be shown interactively within a time
period using the timeline tool. Views
can also contain event descriptions,
primary-source documents and
imagery, maps, digital movies and
audio, pop-up information boxes,
animations, charts, and graphs of
historical data to make the view
highly interactive.

Each view can be constructed to show events that match certain criteria based on data.
These views can be fixed for demonstration purposes, or left open to allow users to
explore various relations between the elements provided allowing for both purposeful
and serendipitous discovery of complex interrelations.

©2007-2011 Bill Ferster / The University of Virginia 4

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 5

Resources

Resources are the sources of information or media to be utilized in a project. The
resources could be a map, some media, a table of data, or a graphic. Each resource
item contains a URL to link the resource to the project. VisualEyes uses four basic types
of resources:

1. Images- Digitized images of primary source documents from digital archives can
be displayed and integrated into maps, animations and other visualizations.
These images can be in JPEG, GIF, or PNG formats, and can be dynamically
sized and positioned. The image must be Internet accessible. The Flickr image
sharing site is a free and convenient place to store images online.

2. Movies- Video files can also be used, including Flash movies and animations.
Video file must be available via the Internet or on Google’s YouTube site.

3. Maps- VisualEyes contains a fully interactive geographic information viewer to
display vector-based maps from GIS systems such as ArcGIS, Adobe Illustrator,
and Adobe Fireworks.

4. Data- A rich array of historical data can be imported into VisualEyes from a
database as a table. This data can be supplied as a CSV, XML file, retrieved
directly from Google Docs, or embedded directly in the project script.

Controls

Controls provide an opportunity for your users to interact with your project with timelines,
animation players, and control panels:

1. Control Panels- Views can have multiple pull-out areas docked to a side of the
screen that can be expanded or collapsed as needed and contain a number of
collapsible check boxes to toggle on and off various features of the map, such as
data overlays, roads, town names, etc. Various map features, such as the
overview navigation insert and map legend can be turned on and off here as well,
but assigning a GLUE script to be activated on clicking. Control panels can
contain radio buttons, check-boxes, combo-boxes, sliders, text input boxes,
buttons, headers and legends.

2. Timelines- Each view can have its own timeline that can control the temporal
aspect of the project. Sliding the cursor changes the view's date, which in turn
can change the way in which information is displayed if it is time dependent.

3. Animation Players- The current time on the timeline can be animated over time,
using a player control, allowing the project to animate any time dependent
elements from any point on the timeline to another.

4. Zoomers and Overviews- The screen can be controlled by a zoom slider and/or
a small overview inset that facilitates panning through the screen.

http://www.google.com/url?q=http%3A%2F%2Fwww.flickr.com&sa=D&sntz=1&usg=AFQjCNH0iTSMDE1My6naG0Smk5VOAV_3yg
http://www.google.com/url?q=http%3A%2F%2Fwww.flickr.com&sa=D&sntz=1&usg=AFQjCNH0iTSMDE1My6naG0Smk5VOAV_3yg

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 6

Displays

Displays provide the means of showing data and information within your project to the
viewer. They connect the raw data from tables into compelling representations that users
can interact with, and include:

 Text displays- Text displays can be drawn using dynamically generated data
base on data from databases, time from timeline, settings of control panel items,
or any combination of them.

 Paths- A series of positions on the screen (specified by pixels or latitude,
longitude if a map) can be defined to appear at particular times. Each position
can be marked by an icon, drawn shape or an image file. Clicking on the position
can call up a web page draw graphical elements, or pop-up window showing
some information. Lines can be drawn to connect these positions.

 Graphs- Various types of graphs (line, bar pie, scatter, etc.) can be drawn using
dynamically generated data base on data from data sources, time from timeline,
settings of control panel items, or any combination of them.

 Concept and network maps- A path can be arrange in a radial concept map
format to help visualize relationships between objects shown in radial,
hierarchical (i.e. an org chart), or free-form shapes.

 Timeviews and shelves- These can be used to display interactive timelines and
scrollable collections of images.

 Widgets- Widgets are a type of graph that graphically displays a single
continuous value on the screen, such as a dial, clock, thermometer, etc.

GLUE

GLUE (The General Language to Unite Events) is a simple scripting language that
connects the various resource elements connect with one another and controls how
they are displayed. VisualEyes knows how to render a number of types of resource,
such as tables, charts, text area, movies, audio clips, vector and raster maps, and the
GLUE language contains elements to cause them to display.

GLUE contains elements for linking user-generated actions, such as clicking on the
screen with actions. Glue also provides an opportunity to calculate tables and fields in
resources based on a simple script in the tag. Many common types of operations can be
defined between these elements, so that VisualEyes is able to relate rich data
relationships between them and visualize them on a special and temporal basis.

When you use Wizards in VisEdit, necessary pieces of glue are usually automatically
created for you. You will use GLUE later to customize your project, but if you are curious
now, you can find more info in the VisualEyes GLUE Reference Guide..

http://www.viseyes.org/VisualEyesGlueRef.pdf

VisualEyes Project Guide

Elements and Attributes

VisualEyes uses a script format called XML to represent the projects internally. XML is a
simple text format for storing information that a computer and a person can understand.
If you use the VisEdit tool to create your project, you do not need to know how to format
XML, but an understanding of its building blocks is useful:

Elements

Elements are building blocks in VisualEyes that are connected
together to create a project. There is one project element, the
element that contains your entire project. The view element
requires additional elements to be nested within it.

The project element can contain multiple view elements,
each one displayed as a separate tab in your project, each
one containing elements itself, such resources, controls and
displays (each box in the drawing represents an element).

Attributes and Values

The attributes control the details of how an element will look or what it will do. If the
element was a person, its attributes would be eye color, weight, gender, etc. An attribute
is always paired up with a value, for example, eyeColor with “blue” and weight with “98.”

For example, the view element, aside from containing other elements, has an attribute
called title, which causes the value assigned to it (in this case “My View”) to be written in
the tab:

Script Text

An element can contain some text that is unstructured. This text is used by VisualEyes
to hold GLUE scripts and also for the content in text displays.

©2007-2011 Bill Ferster / The University of Virginia 7

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 8

Project Sampler

The Project Sampler is a VisualEyes project that demonstrates a number of the displays
and techniques. Each is in its own view and many have a 5-10 minute screen cast
walking you through the script. If you are interested in using one of the ideas in the
Project Sampler, having working examples to play with makes it easier to create your
own.

There is a link to the Project Sampler on the main VisualEyes home page and you can
pull in the script into your own VisEdit space by selecting the Load from ID option from
the File menu and typing "sampler" (no quotes) in the box. The sampler script will be
loaded as your own project to explore and edit as you want.

A note on the formatting in this guide

 elements appear in bold/italic.

 attributes appear in italic.

 The red star * next to an attributes description indicates that
it is a required attribute.

 If you do not specify an attribute that has a default value, it
will retain that default value.

 GLUE methods have parentheses after name().

 WIZARD indicates that a wizard is available to make this
element.

 SAMPLER indicates that an example is available in the
project sampler.

 Try it out: The yellow boxes provide tips on how to
experiment with using the elements shown.

Not all of the available attributes available for a given element listed
in this guide. Check the VisualEyes XML Reference Guide for the
complete list.

http://www.viseyes.org/projectsampler.htm
http://www.viseyes.org/VisualEyesXMLRef.pdf

VisualEyes Project Guide

Getting started with VisEdit

VisEdit is a browser-based interface that allows you to build VisualEyes projects without typing
in all of the XML code that VisualEyes uses internally to make the projects. It can be accessed
here. VisEdit ‘s screen is divided into four frames, each dedicated to a specific purpose:

1. The element tree shows all the elements that make up your project and provides
tools to add or delete them.

2. The attributes editor displays the attributes and values that go with the currently
selected element, allowing you to add, delete, or modify them.

3. The info screen/script editor shows instructional help related to the item you
currently have selected and also provide an an area to edit GLUE scripts and text
displays.

4. Finally, the wizards list provides wizards that walk you through the creation of
certain elements, step by step.

©2007-2011 Bill Ferster / The University of Virginia 9

http://www.viseyes.org/edit.htm

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 10

Creating an account and logging in

You can use VisualEyes by using the guest account. Without modifying the user name
or password, just click 'Log In'. You will be able to edit and save a "communal" account,
but if someone else saves something, your work will be lost.

To create your own personal account, where you can permanently save projects, click
on the link below the UVa logo and fill in the information requested. Then, instead of
using "guest" and "blank", use your new user name and password.

Across from the menus, you will see a user status message. In the screen shot above,
this message is 'LOGGED OUT'. When you log in, it will display your user name, and, if
you are in a project, the project name and numerical id.

Navigating the element tree

The element tree is where you add, select and remove elements from your project and
becomes the main way you work with your project. When you click on an element it will
turn green. If the element contains other elements within it, you can see show those
elements by clicking on the arrow to the left - opening the element’s folder. Clicking on
the arrow again will close the folder. Clicking on an element selects that element as the
current element to:

 Show whatever attributes added to that element in the attribute editor.
 Show a description of the element on the info screen.
 Show possible attributes and their default values that on the info screen.
 Show any wizards for adding new elements in the wizards list.
 Add elements that can be added to this element in the Add new element button.
 Allow it to be deleted by clicking the Remove button.

Navigating the attribute editor

The attribute editor shows the attributes already added to the currently selected
element. Each attribute appears on its own line, showing the name, possible values, and
the actual value set. Depending on the kind of attribute, the options column will display
one of three ways:

1. If setting a text or numeric value, it will be blank and the values column is used to
type the value directly.

2. If setting a color, the options column will be filled with that color. Clicking on it
brings up a color picker dialog. The color’s RGB value appears in the values
column and can be edited directly.

3. If there is a list of options, you can select one from the drop-down button. The
value can also be edited directly in the value column.

The Add new attribute drop-down button adds new attributes to the element. The
remove button removes the currently selected attribute from the element.

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 11

File, Edit and Tool Menus

VisEdit has a menu bar across the top containing options similar to desktop applications
to save and load project, undo/redo, and access to tools:

FILE

● New - start a new project. When you start a new project the screen will be very bare
bones. Creating a new project creates a new project ID number. This ID is how each
project is stored.

● Load Project - a list of available projects is visible in the Information Box. Click on
the project you want it will load, replacing your current one.

● Load by ID - a box will pop up, you enter the id of a project and it will load.
● Save - saves the current project to the VisualEyes server.
● Save As - saves the current project with a new project ID and loads that project.
● Save version - saves the current project with a new project version for safe keeping.
● Show my Data Files - Shows a list of your data files
● Preview - shows you what your project looks like without saving any changes. Click

the Return to Editing button at the top of the page to get back to VisEdit. You can
also reach this screen by clicking the Save and Preview button.

EDIT

● Undo/Redo - your ability to undo and redo actions is almost unlimited. Every time
you undo an action your project returns to its last version. Redo redoes your most
recent undo.

● Copy/Paste - you can copy and paste any element. This would be useful if, for
example, you wanted to create more than one tab with similar attributes. The
element and any sub-elements contained within its folder that are copied and pasted
will be added on the same level of the tree as the element you copied. The pasted
element will sit just below the element that is currently highlighted.

● Move Up/Down - click on an element or attribute you wish to move and click either
Move Up or Mode Down. The element and any elements contained with in it will
move up or down in the tree remaining on its same level of the tree. If you are
moving around view folders, the order in which they are shown in the element (top to
bottom) tree will be the order they are shown in the project preview (left to right).

TOOLS

● Convert data/AI file to XML -Converts/uploads files to the server.
● Upload CSV file to server -Uploads CSV files to the server.
● Upload KML file to server -Uploads KML files to the server.
● Upload local XML as a project -Uploads XML project to the server.

See the Appendix for more information about options in the tools menu.

VisualEyes Project Guide

Using Wizards

Wizards are a feature built into VisEdit that walk you through the creation of certain
elements and attributes step by step. Click on an element or attribute that has a wizard
feature for example in the main project folder you are given two options for using a
wizard. If you click once on the Add a logo wizard the screen changes to the wizard
format. In the top section of the screen is the name of the wizard and an option to press
the Quit button to return back to the Main Tree view. You can quit at any time before
the wizard sequence is complete to cancel the action.

In the bottom right hand corner are two buttons to help you navigate through the wizard,
they are the Previous Step and Next Step buttons. Clicking the Next Step button, or
hitting the Down-Arrow key will start the wizard actions. Each step requires you to make
a decision, add a number, add a name, or add a link from a URL or to a data source.
Hitting the Previous Step button or Up-Arrow key lets you go back and make changes.

When the wizard has completed its sequence an option to click the Add button will pop-
up to bring you back to the Main Tree View. You can now view the changes you made
by clicking the Preview option. If you want to make adjustments or remove the logo you
just added those changes can be made in the Elements and Attributes Navigators.
Wizards are context sensitive and not available for all elements and attributes.

Viewing your project

To view your project at anytime you can click the “Save and Preview” button under the
Attributes Editor or you can simply preview without saving by clicking Preview in the File
pull-down menu at the top of the screen. Viewing your project will show you how
viewers will see and use your project.

A NOTE FOR CHROME USERS: For some reason, known only to Google, your project
will not appear sometimes when the "Save and Preview" button is clicked. It is loaded,
but you need to click around the screen to have it show up. In addition, the Mac versions
of Chrome inhibit the copy function (the CTRL-C key), so as much as Chrome is a great
browser, it might be better to used Firefox or Safari when editing projects.

©2007-2011 Bill Ferster / The University of Virginia 12

VisualEyes Project Guide

Creating VisualEyes Projects

Making a VisualEyes project involves gathering web accessible resources and creating a script
using the VisEdit tool to weave them into a presentation. You need to identify resources you
want to use, such as images, movies, and data sets, and put them on the Internet so they can
be accessed from anywhere. These can be stored on your own server, or a number of free or
inexpensive services can be used:

 Images can be easily stored on sites such as Flickr or Picassa
 Videos can be stored on YouTube
 Data files can be stored on Google Docs, or Dropbox.com

You will need to create an account using VisEdit where your project scripts and data files can be
stored on our servers. The primary purpose of VisEdit is to guide you through creating a project
script by allowing you to:

1. Add and/or modify elements to your project script,
2. Save the revised script to the UVa server,
3. Display your project using that script,
4. Rinse and repeat...

The structure of a project

You can think of the project element as the main folder or tree-trunk, and the elements it holds
as sub-folders or tree-branches. The project contains a number of sub-folders called views.
Each view manifests itself as a tab in your project. Each view can hold elements such as
resources, displays and controls:

The most basic elements of a project are created when you start a new project in VisEdit.
These are frame, textformat, logo, tab and view. These elements are required for all projects
and can be customized as needed by adding or changing attributes. Many attributes have
default settings, so if you do not explicitly set them, their default values will be used

NOTE: Not all of the available attributes available for a given element listed in this guide. Check
VisualEyes XML Reference Guide for the complete list of available attributes.

©2007-2011 Bill Ferster / The University of Virginia 13

http://www.viseyes.org/VisualEyesXMLRef.pdf

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 14

FRAME ELEMENT

Frames are used to define rectangular areas on the screen or size displayed objects. The frame
element is used to set sizes for many elements. The attributes you set in the project element’s
frame element set the bounds of the views for the entire project. Some common attributes are:

Attribute Description Default..

backCol Color of background as an RBG hex number 0xffffff
corner Radius of corner of frame for rounded rectangle 0
frameCol Color of frame as an RBG hex number 0x000000
frameWid Width frame in 0
hgt Height of frame in pixels*
wid Width of frame in pixels*

TEXTFORMAT ELEMENT

The textformat element controls the basic look of text throughout a project. The
attributes of the textformat element therefore apply to the entire project. This does not
mean, though, that all text in a project has to look identical. Rather, the styles are
inherited in a cascading effect.

This means, for example, that the view element inherits the textformat's attributes, but
an individual view elements' attributes can also be changed from within its folder to
supplement those values specified in the textformat element. All elements within the
edited folder will inherit the edited textformat element, like a cascade. This cascade
continues throughout the folder. The Arial font is anti-aliased and shows fewer "jaggies"
than _sans. Some common attributes are:

Attribute Description Default..

align Alignment of text to the screen: left | right | center left
bold Whether or not text is bold: true|false false
col Color of text as an RBG hex number 0x000000
font Font face of text: Arial | _sans | _serif | _fixed _serif
italic Whether or not text is italicized: true | false false
size Height of text in pixels 12
underline Whether or not text is underlined: true | false false

LOGO ELEMENT

The logo element allows you to add an image file such as an organizational logo,
typically placed below the screen frame that show up in all views.

Attribute Description Default..

left Number of pixels from left of screen*
source File name of logo (including full http:// path and extension)*
top Number of pixels from top of screen*

WIZARD

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 15

TAB ELEMENT

The tab element controls the look of tabs at the top of each view, including whether you
want to have a tab at all (an option if you have only one view in your project). The
attributes of the tab element, should you add it, apply to all the tabs in the project (i.e.,
one for each view) as a group. When a new project is created, it will contain one tab
element by default. Each project has only one tab element. If there is no tab element
within the project element, no tabs will be drawn. Some common attributes are:

Attribute Description Default..

offCol Color of tab when inactive 0xcccccc
offTextCol Color of tab text when active 0x000000
onCol Color of tab when active 0x000000
onTextCol Color of tab text when active 0xffffff
wid Width of tab 100

VIEW ELEMENT

The elements above have applied to the project as a whole. A project can contain
multiple views, meaning the project will have more than one view element. When a new
project is created, it will contain one view element by default. Each view folder becomes
its own tab in the project. The view contains other elements that are displayed within
that view or tab.

The view element is where the real substance of the project lies. Each view will have
resources such as maps, images and data. Displays can also be added as means of
showing data and information to the user. Displays can include text displays, paths,
graphs, concept maps, timeviews and more. They connect the raw data from tables into
compelling representations that users can interact with through controlpanels (timelines,
animation players, control panels, and more). The scope of any view is itself. This
means each view is an island unto itself. Some common attributes are:

Attribute Description Default..

pan Allow panning of screen: true | false true
title Name of the tab*

WIZARD

 If your image is larger than the view’s frame and pan is set to true, your user will be
able to click and drag the image to see parts beyond the frame size. If pan is set to false
then the image will be fixed in place, unless you are zoomed in using a zoom control.

Try it out: The skeleton project
The four elements nested within the project element (textformat, frame, tab, and
view) are used in every VisualEyes project. Experiment with adding and changing
various attributes and adding new views. Your work-flow should be:

1. Try something
2. Save and Preview to see how it looks
3. Go back to step 1

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 16

Resources

Resources contain information to be used by VisualEyes. This information can be a table of
data, a vector map, text, images, animation, movies, audio, charts, and graphs. Resources are
the raw material for VisualEyes views. We give the resources names (called ids) so we can
easily provide access to them by other elements such as GLUE scripts.

All resources must be web-accessible, meaning they can be loaded into a browser by providing
the URL address as the src attribute. Being web-accessible means you could type that URL into
a browser and it would display. The various types of resources fall into four basic categories:

1. Image resources that point to pixel-based (aka raster) images such as photographs and
drawings in JPEG, PNG, or GIF formats.

2. Movie Resources that point to movies and audio, loaded from a website or YouTube.

3. Map Resources where vector maps and drawings imported from ArcGIS, Adobe
Illustrator and other graphics packages are loaded from a website or the VisualEyes
server.

4. Data Resources, where numeric and/or string data organized into tables is loaded from
a website, Google Docs, or the VisualEyes server.

Common resource attribute tags

There are some attributes that are common to all resources:

● The id attribute* provides a way to uniquely identify the resource to other
elements in a view. The scope of any resource is within the view it is contained
by.

NOTE: IDs are required and must be a single word with no spaces!

● The type attribute* defines the type of resource (i.e. map, image, data, etc.).

● The preload attribute allows you to control whether or not a your project will start
before this resource is loaded. By default, this is set to true, meaning a spinning
wheel will appear while that resource is being loaded.

VisualEyes Project Guide

IMAGE RESOURCE

VisualEyes allows you to load an image file (.jpeg, .gif, or .png)
from any valid URL. The URL address goes in the src attribute.
The URL could belong to an image on another web page, or in
some sort of online storage database, such as Picassa and Flickr.
See the Appendix for information on importing these images from
these sites.

©2007-2011 Bill Ferster / The University of Virginia 17

By default, the specified image is automatically sized to fit in the
window, positioned in the top left corner. If much larger than the frame size, the image
can be panned and zoomed. You can also specify the position or size of the image. Any
number of images can be layered.

Image resources can be geo-referenced, meaning you can identify points on them using
latitude and longitude, rather than pixel coordinates. See the section on geo-referencing
in the Appendix for more information.

Attribute Description Default..

id ID of resource*
src Source URL of image file (with http:// part)*
type Type of resource - must be image *

WIZARD SAMPLER

Try it out: Adding an image resource

● Click on a view in the Element Tree.
● Use the wizard feature to add an image.
● Give your image a one-word id. It can be any name you wish and will be

most helpful if the name describes what the image is.
● It must have a source, as noted above the source must be a URL of a

.jpeg, .gif, or .png. You can use this image to test:
http://www.viseyes.org/chocolates.jpg

http://www.viseyes.org/chocolates.jpg
http://www.viseyes.org/chocolates.jpg

VisualEyes Project Guide

MOVIE RESOURCE

©2007-2011 Bill Ferster / The University of Virginia 18

re
b.

VisualEyes supports two formats for playing digital movie clips,
FLV Flash video clips on the web, and clips from YouTube. You
can use the wizard, or a resource element with its type attribute
set to "movie" to create a movie resource in a view. As with an
image resource, the src attribute is the full URL (with http://) whe
the movie sits on the we

The movie resource requires a frame element within it to define the size, position and
look of the player that encloses raw movie. Each time you add a resource that needs a
frame (using the Wizard), you get a frame element added to that resource. In other
words, the frame that controls the project view is separate. The hgt and wid attributes set
the width of the video, and an 8-pixel border is added around it on all sides. Omitting the
wid attribute will cause movie and player to size itself to match the native resolution of
the movie. A slider and play button will be drawn below the video increasing the total
height by 20 pixels beyond the borders.

The autoPlay attribute determines if the movie will play when it first appears, and
autoRewind will rewind the movie when it's done if set. start and end specify the movies
bounds to start and stop, in milliseconds. See the Movies section in the Appendix for
more advanced features of movies.

Using movies from YouTube

To use a video clip from YouTube, put the YouTube movie id, such as “SzSwnbxb9TY”
as the src attribute. You can find the movie id by looking at the video’s URL and copying
the part after “v=” and before a “&” or the end, http://youtube.com/?v=SzSwnbxb9TY
would yield an id of “SzSwnbxb9TY.” NOTE: YouTube videos must be made "public"
in YouTube to be played in VisualEyes.

Attribute Description Default..

autoPlay Play movie/sound when loaded: true | false false
autoRewind Rewind movie/sound when finished: true | false false
close Has close button: true | false false
end Ending time of movie (in ms)*
id ID of resource*
src Source URL (with http:// part unless its a YouTube clip)*

Elements: frame*

WIZARD SAMPLER

Try it out: Adding an image resource

● Click on a view in the Element Tree.
● Use the wizard feature to add a movie.
● Play around the frame options to see how they change the player.

http://youtube.com/?v=SzSwnbxb9TY
http://youtube.com/?v=SzSwnbxb9TY
http://youtube.com/?v=SzSwnbxb9TY
http://youtube.com/?v=SzSwnbxb9TY
http://youtube.com/?v=SzSwnbxb9TY
http://youtube.com/?v=SzSwnbxb9TY
http://youtube.com/?v=SzSwnbxb9TY
http://youtube.com/?v=SzSwnbxb9TY
http://youtube.com/?v=SzSwnbxb9TY
http://youtube.com/?v=SzSwnbxb9TY
http://youtube.com/?v=SzSwnbxb9TY

VisualEyes Project Guide

MAP RESOURCE

Maps are an important element in many VisualEyes
projects. While images of maps are often used, especially
historic maps, it is useful to have some maps that use
vector drawing techniques (i.e. drawn using lines and

polygons rather than a collection of pixels in an image).

Vector maps have three primary advantages in VisualEyes:

● The lines and shapes do not get blurry, no matter how far you zoom into them
like images do, unless those images are very high resolution.

● You can dynamically color the interior and exterior edges of individuals shapes in
a map (called features). Individual features can be things like counties or states.
If you use an image map, you can only effect the map as whole.

● You can react to clicks on the map's features and cause GLUE elements to
perform actions. You would need to set up dots on a path element to by hand to
make an image map click-able.

The map resource shares most of the same attributes and capabilities as an image
resource, but instead of specifying the URL of a still image file, you provide the URL of
an XML file. That file is a list of all the lines and polygons to be drawn. We can import
vector data from programs such as arcGIS, Adobe Illustrator, and any program that can
output an Illustrator .ai file. See the section on converting AI files in the Appendix for
more information.

Individual features of maps can be made interactive and cause other actions when
clicked or hovered over. Often Paths and Dots (see below) are used in conjunction with
maps to show change and information over time and space. The Paths and Dots can be
linked to a timeline (see below). See the section on Interactive Maps in the Appendix.
Map resources can be geo-referenced, meaning you can identify points on them using
latitude and longitude, rather than pixel coordinates in things like dots. See the section
on Geo-referencing in the Appendix.

NOTE: A map resource needs to be refreshed in order to be drawn. To do this, add a
line to a GLUE script that says: refresh(myMap), where "myMap" is the id of your map
resource.

Attribute Description Default..

id ID of resource*
src Source URL of vector shape data file (with http:// part)*
type Type of resource - must be map*

WIZARD SAMPLER

©2007-2011 Bill Ferster / The University of Virginia 19

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 20

GMAP RESOURCE (GOOGLE MAP)

Embeds a Google map in VisualEyes. The map can be attached to the screen base,
much like an image resource can be, or as a floating window using the depth attribute.

Attribute Description Default..

depth If resource is bound to screen: screen | topMost screen
dim Dimensionality: 2D | orthogonal | 3D 2D
frameCol Color of frame as an RBG hex number 0x000000
frameWid Width frame in pixels 0
hgt Height in pixels 500
id ID of resource*
lat Latitude to center map 38.14
left Number of pixels from left of screen 0
lon Longitude to center map -78.45
maptype Type of map at start (0=map, 1=hyb, 2=sat, 3=ter) 0
overview Show overview navigator? true | false true
top Number of pixels from top of screen 0
type Type of resource - must be gmap*
typemenu Show map type menu? true | false true
wid Width in pixels 800
zoom Show zoom control? true | false true

VisualEyes Project Guide

XML RESOURCE

©2007-2011 Bill Ferster / The University of Virginia 21

endix

In its simplest form, an XML data resource is a list of things: numbers,
words, paragraphs, URLs, etc. We call it an XML resource but the raw data
can be brought into projects from many formats in addition to XML; comma
delimited (.csv) files, tab delimited (.txt), , or directly from a published
Google Docs link (see section in the App).

For more information, see the section on Using Structured Information in the Appendix.

Each of these three methods stores the data into an identical format with VisualEyes, as
a list containing the elements, referenced from the resource’s name. Data brought in this
way can be queried using the GLUE query() method or used in GLUE methods that
require table data. Data resources that are brought in by these methods share

Attribute Description Default..

id ID of resource*
src Source URL of data file (with http:// part)*
type Type of resource - must be xml*

WIZARDSAMPLER

Try it out: Adding an XML resource

● Click on a view in the Element Navigator.
● Use the wizard feature to add a XML resource.
● Here is a link to a simple data source:

http://www.viseyes.org/SampleTable.csv
● Add a GLUE element , add a script and init (set to true) attribute to the

view
● Add a status() method to the GLUE's script display data from the table:

status(*myData.name)
● This will show all the names at the bottom of screen when run.
● Change the status() method to: status(*myData.age.2)
● This will show all the third age bottom of screen when run. (remember,

computers start counting at 0!)

TABLE RESOURCE

The table resource element creates an empty table with whatever fields you want, rather
than importing CSV or XML files. This is useful when you want to make a table from a
subset of some elements in an imported file. See the Table Resource section the
Appendix for more information.

http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2FSampleTable.csv&sa=D&sntz=1&usg=AFQjCNF-IzCTGXTFoHt3X5l6GpdgwRtfSQ
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2FSampleTable.csv&sa=D&sntz=1&usg=AFQjCNF-IzCTGXTFoHt3X5l6GpdgwRtfSQ
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2FSampleTable.csv&sa=D&sntz=1&usg=AFQjCNF-IzCTGXTFoHt3X5l6GpdgwRtfSQ
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2FSampleTable.csv&sa=D&sntz=1&usg=AFQjCNF-IzCTGXTFoHt3X5l6GpdgwRtfSQ
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2FSampleTable.csv&sa=D&sntz=1&usg=AFQjCNF-IzCTGXTFoHt3X5l6GpdgwRtfSQ
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2FSampleTable.csv&sa=D&sntz=1&usg=AFQjCNF-IzCTGXTFoHt3X5l6GpdgwRtfSQ
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2FSampleTable.csv&sa=D&sntz=1&usg=AFQjCNF-IzCTGXTFoHt3X5l6GpdgwRtfSQ
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2FSampleTable.csv&sa=D&sntz=1&usg=AFQjCNF-IzCTGXTFoHt3X5l6GpdgwRtfSQ
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2FSampleTable.csv&sa=D&sntz=1&usg=AFQjCNF-IzCTGXTFoHt3X5l6GpdgwRtfSQ
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2FSampleTable.csv&sa=D&sntz=1&usg=AFQjCNF-IzCTGXTFoHt3X5l6GpdgwRtfSQ
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2FSampleTable.csv&sa=D&sntz=1&usg=AFQjCNF-IzCTGXTFoHt3X5l6GpdgwRtfSQ

VisualEyes Project Guide

Controls

Controls put the interactive in interactive visualizations and provide opportunities for users to
explore the project. These controls include control panels the contain items such as radio
buttons and check-boxes to turn on and off project elements, timelines to set the current date,
animation players to control animated sequences, and zoomers to zoom into parts of the
screen.

CONTROL PANEL

Control panels provide an interactive dialog box-like means for
allowing the user to choose what resources are displayed on the
screen within parameters set in the project. Control panel items
can include: check boxes, radio buttons, combo selection boxes,
sliders, text input, and buttons. A user clicks on any of the control
panel items to cause some sort of action. For example, clicking
on a radio button in your control panel changes a street map
resource from 1900 to 1950 and a check box allows the viewer to
choose whether they want topographical information layered on
top of the street map. Items typically cause some action by adding
an id of a GLUE element to call when they are changed or clicked.

A controlpanel element contains a frame and a series of items that users click on or
drag on to cause some change.

Attribute Description Default..

title Name of the control panel as it appears in header
closable Control panel has closing button: true | false true
open Control panel is open on start up: true | false true

WIZARDSAMPLER

Control Panel frame

The frame specifies the size, position and color of the controlpanel. The docking
attribute in the frame can be top, left, bottom, right, or float. The first four cause the
controlpanel to “stick” to that side of the screen, ignoring the positioning parameters
(top and left) set in the frame. The setting docking to float will allow the controlpanel to
be positioned anywhere on the screen as dictated by the top and left attributes.

Attribute Description Default..

backCol Color of background as an RBG hex number 0xffffff
docking Docking mode: left | right | top | bottom | float float
frameCol Color of frame as an RBG hex number 0x000000
frameWid Width frame in 0
hgt Height of frame in pixels*
left Left of frame in pixels
top Top of frame in pixels
wid Width of frame in pixels*

©2007-2011 Bill Ferster / The University of Virginia 22

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 23

Control Panel Items

The items form the active portion of the controlpanel as a running list of controllers
such as check boxes, radio buttons, combo selection boxes, sliders, text input, and
buttons, chosen by setting the type attribute to one of the following:

 backbuton A round button with a < that will trigger glue method when clicked
 buton A round button with a > that will trigger glue method when clicked
 buttonbar A square button with the title written inside that will trigger a glue
 checkbox A checkbox with the title to the right
 color A color chip to choose a color from a set of choices,
 combobox A combo box to choose between several choices
 half Used to add a half-space vertically (leading) to the list
 header An arrow control to collapse or expand the items to follow
 legend Used to put a color choice when drawing legends
 line Draws a separator line
 query Adds a query line (if: something equals value)
 radio A radio button, of which only one is active in a contiguous group
 search A text input box with a search button bar attached
 slider A horizontal slider to set the value from 0-100
 text Displays a line of text
 textbox A text input box

They are drawn using the current font settings, but the bold and italic can be over-ridden
on a per-item basis by setting the item’s bold and italic attributes to true. The current
leading in the textformat element determines how far they are spaced vertically. If there
are more items than fit vertically, a new column is started.

Radio buttons act a a collective group, allowing only one radio on at a time. Header
items will collapse items below it (until the next header item). Legends provide a box
colored by the def attribute, and are stacked from the bottom of the controlpanel up.
Setting the glue attribute of a checkbox item to “legend” will cause the legends to
collapse if checked

ComboBoxes are useful items that contain a series of choices in a drop-down menu.
When an option is selected, its name is set as the current value, just like a 0 or 1 is set
with a checkbox. You set the values in the title attribute, separated by | marks in the title,
like this: “Yes|No|Maybe so”.

Attribute Description Default..

bold Whether or not text is bold: true | false false
def Default value for item on startup: true | false false
glue GLUE to be called by item (with optional data)
italic Whether or not text is italicized: true | false false
labCol Color of text label 0x000000
title Title that appears by control item*
type Type of control (see list below)*

VisualEyes Project Guide

TIMELINE

Each view can have its own timeline element that can control the temporal aspect of the
project. Sliding the cursor changes the view's date, which in turn can change the way in
which information is displayed if it is time dependent.

The timeline must be linked to dates. The min, max and start attributes define the
minimum, maximum and starting dates for the timeline, and can be expressed as “year”,
“month/year” or “day/month/year.” Dates can be formatted as years (1976), month/year
(3/1856), day/month/year (3/7/1756), or full date (January 6, 1798).

Paths and Dots on your image can be linked to the Timeline. The attributes of the dots
must include dates using the same format as the Timeline max and min. The timespan
can be divided by 4 major tick marks, whose length is set by majorTick and 3 minor tick
marks set by minorTick. The tics can be place above, below and across the main
timeline bar by setting tickPos. The showValues and showMinorValues attributes
determine if the tick mark’s time values are displayed.

The speed attribute controls how fast an animation will play. The default is 100, meaning
that it will play 10 seconds with the speed slider in the middle. Setting it lower, say to 20,
will make the timeline play in 50 seconds, and 50 will play 20 seconds, etc.

Attribute Description Default..

dateFormat date format: yr | mo/yr | dy/mo/yr | mo/dy/yr | mo,dy,yr yr
min Starting time of the timeline in any time format*
max Ending time of the timeline in any time format*
minorTick Minor tick make length in pixels 0
numTicks Number of major ticks 4
play Show play button: true | false true
showValues Show values with major tick marks: true|false false
speed Speed of playback from 1-100 50
start Initial time of the timeline in any time format on startup

Elements: frame*, item*, labels, textformat, timebar

WIZARD SAMPLER

Try it out: Add a timeline

● Click on a view in the Element Tree.
● Use the wizard to add a timeline.
● Set the values for your starting and ending dates.
● Try playing around with the timeline’s attributes to see how it

affects the way the timeline works or looks.

©2007-2011 Bill Ferster / The University of Virginia 24

VisualEyes Project Guide

Punctuated time bar

You can add a segmented bar that will control the span of the overall timeline (called a
punctuated time bar) by adding a timebar to the timeline. The timebar consists of a
series of segments (must be contiguous!) that contain a starting and ending date within
the overall min and max set in the timeline. The timebar provides a way to make the
timeline’s span to be a portion of the full time being represented for better control and
slowing animation of short events within the larger time-frame.

Attribute Description Default..

all Add a show all segments button: true | false true
equal Make all segments equal widths: true | false false
glue GLUE id to be called when all button is clicked
hgt Distance of segments from main timeline 6
offCol Color of inactive segment as RBG 0x999999
offTextCol Color of inactive segment text as RBG 0x444444
onCol Color of active segment as RBG 0x999999
onTextCol Color of active segment text as RBG 0xffffff

Elements: segment*

A glue attribute can be specified to cause some GLUE to trigger when any segment is
clicked. You can append parameters to the glue’s name, which will be available as
variables in the GLUE element.

For example, if we wanted to pass the start and end time to the glue attribute, we would
spec the glue as: newTime?2&8, the value of 2 would be set in $$click variable and the
value of 8 would appear in the $$param variable within the newTime GLUE element.

Segment

When a segment is clicked, the timeline’s min and max settings are set to the
segment’s start and end attributes, making the timeline’s span smaller. The screen is
updated as if you had dragged the slider to the segment’s start date. A button to make
the timeline extend from the first segment to the last can be added by setting the all tag
to true.

Attribute Description Default..

end Time of the segments end in any time format*
glue GLUE id to be called when segment is clicked
start Time of the segments start in any time format*
title Text to be displayed in the segment*

©2007-2011 Bill Ferster / The University of Virginia 25

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 26

Animation Player

Timelines by default have an animation player button that will cause the timeline to play
on its own, as if one was dragging it. The speed of the animation can be controlled by
setting the slider bar next to the button faster or slower. This speed can be controlled
setting the timeline speed attribute. It defaults to 50. Setting it lower slows the speed,
and higher increased the speed. This feature can be turned off by setting the timeline
play attribute to “false”. You can also show only the animation player without a scroillable
timeline to its left by setting the frame element's wid attribute to 0.

Timeline Labels

Labels signifying specific dates can be added using a labels tag. What direction they
emanate from the main bar is set by pos, and the distance away from the main bar is set
by offset. Lines can connect the label to the main bar by setting the lines attribute. The
textformat will use the timeline’s text formatting as its basis and elements can be over-
ridden. The actual entries are set using the timelinelabels() GLUE method.

Attribute Description Default..

lines Show lines to labels: true | false true
offset Distance from time bar to labels in pixels 8
pos Position of labels relative to the main bar: top | bot bot

Elements: textformat

VisualEyes Project Guide

ZOOM CONTROL

Zoom controls, overviews and magnifier boxes allow you zoom into the
screen in much the same way that Google Maps allows you to zoom in on
maps. If the screen has a high-resolution or vector-based image, zooming in
will yield a narrowed, but sharp view of the screen.

The zoomControl is a vertical slider for setting the degree of magnification.
When the slider is dragged to the bottom, the entire screen will be shown,
and when dragged to the top, the screen will zoom in until the maximum set
by the max attribute. By default, this is set to “3”, meaning the screen will
zoom in 3 times or 300%, but it can be set to any number from 1 to 10. The
screen can be panned by dragging it left or right to bring the desired
zoomed-in area into view.

You can attach a magnifier icon that will allow you to draw a box that both sets the
magnification factor and pans the area into view by setting the magnifier attribute to
“true.”

Attribute Description Default..

left Horizontal position of zoom control none
magnifier How magnifier control: true | false false
max Maximum zoom allowed (1-10 times) 3
top Vertical position of zoom control (in pixels) none

WIZARDSAMPLER

Try it out: Add a Zoom Control

● Click on a view in the Element Trtee.
● Use the wizard to add a Zoom Control.
● Try playing around with the zoom control’s attributes to see how it

affects your magnification possibilities.

©2007-2011 Bill Ferster / The University of Virginia 27

VisualEyes Project Guide

OVERVIEW

Overviews are small insets to the side of the screen that contain an
image with a movable box that represents the screen area that can be
dragged to pan the current magnified portion of the screen into view.

The overview can dock itself to any corner of the screen using the

docking attribute and the wid attribute sets its horizontal size. The vertical size is set
according to the shape of the background image. The src should be set to an image
(.jpg, .gif or .png) to use as the background of the overview, and it will be stretched to fit
the space. Using the same image as you used for the screen is fine.

Attribute Description Default..

boxCol Control box colo 0xffff00
docking Docking location botLeft
wid Width of overview 100
src URL of image (full path with http://...) none

WIZARDSAMPLER

Try it out: Add an Overview

● Click on a view in the Element Tree.
● Use the wizard to add an Overview into an element with an image.
● You must have an URL image source in .jpg, .gif or .png form. This

should be the same image as the one used for the background in this
folder.

● Try playing around with the overview’s attributes to see how it affects
your dragging and panning possibilities.

©2007-2011 Bill Ferster / The University of Virginia 28

VisualEyes Project Guide

Displays

Displays provide the means of showing data and information within your project in the form of
pop-up information boxes, charts, widgets, paths and other displays. Several kinds of displays
use dots, discussed in more detail below.

INFOBOX

Information boxes are pop-up boxes used to display textual
information on demand. They are typically called by clicking on
path and graph elements. InfoBoxes can contain a variant of
HTML formatting and can be populated using a search and
replace variable that can be set using a database. As with a
movie resource, the frame of the box is controlled by the frame
element.

The text can be have special tags($$1 through $$99 that can be
replaced dynamically using the replaceword() method. Text can
contain the standard text formatting macros (see the Appendix).

Attribute Description Default..

backImg Backgound image URL
border Border amount in pixels 24
depth Should it always appear on top: screen:topMost topMost
id ID of resource*
position Position of box following click: abs|north|south|east|west abs
tail Box tail if following mouse click: line|none|solid none
title Title

Elements: frame*

WIZARDSAMPLER

Tabbed infoboxs

Infobox’s can be subdivided into multiple tabbed pages, to make it easier to display
larger amounts of information in a smaller space. Each section has its text divided by a
header() tag. The name with the tag's parenthesis will show up in the tab.

©2007-2011 Bill Ferster / The University of Virginia 29

VisualEyes Project Guide

DOCVIEWER

©2007-2011 Bill Ferster / The University of Virginia 30

rce.

A docviewer is a display element very similar an
infobox to that can hold HTML formatted text and a
picture side-by-side in series of pages provided by a
data source such as an XML file. The data source can
have 4 fields: title, source, desc and caption. The title
provides a title at the top and a way to select items
from the data sou

The text and picture information is usually supplied by a data resource from a CSV file,
and sent to the docviewer using the filldocviewer() GLUE method, typically as the result
of a query.

Items with the same title will appear as pages within the document viewer. The source
gives a url for a picture if desired, and desc is an HTML formatted text area. If a caption
field is defined, it will appear underneath the picture. If both desc and source are
defined, they will appear side by side. If only one is defined, only that one will appear.
See the section in the Appendix on “Formatting docviewers” for more information on
creating the contents of docviewers. Text can contain the standard HTML formatting
macros

Attribute Description Default..

border order amount in pixels 24
close as close button: true | false true
id ID of resource*

Elements: page
 WIZARD SAMPLER

Page

You can also add content to the docviewer with a series of embedded page elements.
Each page element contains a page, with title, image, and text being provided by the
title, src, and desc attributes in the page element.

Attribute Description Default..

caption Image caption
desc Text for description page
src Source URL for image

VisualEyes Project Guide

PATH

©2007-2011 Bill Ferster / The University of Virginia 31

e resource.

Paths place dots on the screen and can be connected by
lines if desired. The width, color, and alpha can be
specified. The position of the dots is set in pixels, relative to
the base resource the path is atop, or in lat / lon
coordinates based on the bas

If showAllDots is set true the dots are not time dependent.
If false, dots can have times associated with them, so they will appear when the view’s
timeline date reaches a certain time. The time or date attribute of a dot tells when that
dot will be drawn. 0 is at start, .5 is middle, 1 is end, etc. If a date is set, dot will appear
when its date matches the date on timeline. Setting the end attribute will turn off a dot at
a particular date. Time dependent paths can have the line advance between dots as the
time changes by setting tweenLines to true. The current time of the line can be preceded
by an icon by setting the head attributes. Paths are useful in showing a trail on a map,
but are often used to put buttons, menus and other navigational elements on the screen.
Set showAllDots to true, so they will always appear

If you have a number of journeys along a set number of path ways, you can define a
collection of dots as a pathway. The timing within the path is relative from 0 to 1 start to
end, rather than a particular date for better flexibility and accomplished by setting the pct
attribute in the dots contained in the pathway. That pathway can be drawn multiple
occasions and different times by adding route elements to a path that define the start
and end times a particular pathway will be drawn.

The front of a path can have an icon or image leading it by setting headStyle to an icon
or image name. You can color the head icon by setting headCol to a color. Clicking on a
head will cause a GLUE element to run if one is specified, allowing you to trigger other
actions and displays. You can find out which head was clicked by looking at the
$$param global list parameter, which will be set to its index view (0 is 1st path, 1 is 2nd,
etc.). Alternatively, you can set this value manually by appending it the glue’s name with
a ? mark, such as: glue=myGlue?show me. This will cause the words “show me” to be
set in the $$param list and available for use in the glue script. The first head in the first
path in a route element will set $$param to 1000, the second to 2000, etc).

Attribute Description Default..

col Color of line, as an RBG hex number 0x00ffff
headCol Color head as an RBG hex number or -1 for no color icon -1
headEnd Leave head icon up at end of path: true | false false
headSize Size of head icon in pixels
headStyle Image shown at head of path (icon: | .gif | .jpg | .png | .swf)
id ID of path*
showAllDots Show all dots, regardless of timing: true | false false
tweenLines Animate line between dots based on timing: true | false false
wid Width of line in pixels 0

Elements: dot*, textformat

WIZARD SAMPLER

VisualEyes Project Guide

Using paths as selectors and menus

Since each dot in path element can have a GLUE element called when clicked on,
paths are an easy way to create menu bars to select options by clicking on them. By not
specifying a time or date attribute in the dot, it will always be visible.

In this example from the Poplar Forest project, a path containing
three icons (the info, letter and an image of a horse) provide an
easy way to cause other displays to be drawn when clicked by
specifying a GLUE element to call:

path
 dot style=icon:info x=44 y=500 glue=showAbout
 dot style=icon:letter x=44 y=500 glue=showLetters
 dot style=horse.gif x=44 y=500 glue=showTransport

A more sophisticated example is shown to
the right, where the dots work as a "radio
button", with only one being active at any
time, A path containing six year dots are arranged in a line. The default alpha (opacity)
for the dots was set to 0 (invisible), but the GLUE script causes all the other buttons to
be hidden, and the selected one shown:

path id=yearPath
 dot x=10 y=500 glue=setYear style=cir alpha=0
 dot x=30 y=500
 dot x=60 y=500

glue id=setYear [script]: repeat(6)

 setdot(yearPath,0,$ix,alpha,0)
 repeat(end)
 setdot(yearPath,0,$$param,alpha,1)
 refresh(yearPath)

The path is similar to the first example. Notice that the glue and style and alpha
attributes did not need to be repeated in the dots that follow, as they will "inherit" them
from the first dot.

The setYear GLUE element's script does the work here. The setdot() method is used to
change the alpha attribute of the dot. The repeat() method repeats the setdot() method 6
times, one for each dot, setting the dot's alpha attribute to 0 (invisible), and
incrementing the $ix list so each dot is set in turn. The $$param list is set to the currently
clicked dot automatically, so the next line sets the dot's alpha is set to 1, making it
visible. Finally, the path element is re-displayed using the refresh() method.

©2007-2011 Bill Ferster / The University of Virginia 32

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 33

DOT

Dots are an element used by a number of display elements to put information on the
screen on top of a resource, such as an image or a map. The basic idea of a dot
element is that it:

1. Draws as a graphical element that appears on the screen,
2. In a particular place,
3. At a particular time, and
4. Can call a GLUE method when you click or hover over them with your mouse.

Attribute Description Default..

alpha Opacity as a number from 0-100 100
col Color of interior as an RBG hex number 0x00ffff
date When dot becomes active (any time format)
end When dot becomes inactive (any time forma)t
frameCol Color of frame as an RBG hex number 0x000000
frameWid Width frame in pixels 0
glue GLUE id to be called if clicked
hgt Height in pixels 0
icol Color of an icon(-1 means leave icon as it was drawn) -1
id ID of path
lab Labels for dot
labelCol Color of labels as an RBG hex number 0x000000
labelPos Labels position rel. to dot: bot | center | left | right | top bot
style Shape of dot (icon: | | cir | rbar | span | star | triu | trid | tril | trir
 bar | but **
time Time dot becomes active from 0-1 -1
wid Width in pixels 0
x X position of dot
y Y position of dot

** You can also specify graphics images via a url. VisualEyes support images in the
JPEG, GIF, SWF, and PNG formats. You must specify the full Internet address: (i.e.
style=http://www.mysite.com/mypic.jpg).

Dots will continue using properties set in previous dots to reduce unnecessary repeating
of attributes. For example, if you set the style to triu (up-facing triangle), all dots that
follow would be rendered as triu until re-specified. See Persistence of Dots in the
Appendix for more information.

NOTE: Clicking on a dot's graphic will cause a GLUE element to run if there is one
specified, allowing you to trigger other actions and displays. You can find out which dot
was clicked by looking at the $$param global list parameter, which will be set to the dot’s
index in the path. The first dot will set $$param to 0, the second to 1, etc. Alternatively,
you can set this value manually by appending it the GLUE’s name with a ? mark, such
as glue="myGlue?show me". This will cause the words “show me” to be set in the
$$param list and available for use in the GLUE script.

VisualEyes Project Guide

CONCEPT MAP

Concept maps are similar to paths, but the paths can be
arranged in a radial manner similar to a hub and spoke
shape. The dots are not time dependent, and lines
(edges) must be specifically drawn by setting the
relationships between the dots (nodes). Labels are
automatically drawn if specified underneath the dot. The
frame specifies the overall bounds of the concept map.

You can add a legend that identifies the type of lines by
including a legend tag. Each tag adds an entry that
shows a label associated with each linestyle. Setting
backCol will draw a “wash” of color alpha’d over the

background, to help highlight the concept map and separate it from the background.

Attribute Description Default..

backCol Color of wash to blot out background as RBG (-1=off) -1
col Color of line an RBG hex number 0x00ffff
cx Center X position in pixels
cy Center Y position in pixels
hgt Height in pixels for ovals (omit for perfect circle) 0
id ID of map*
wid Width in pixels 0

Elements: dot*, line, linestyle, legend

WIZARD SAMPLER

Lines and linestyles

The lines define the relationship between the dots and determine how they will be
placed. Setting the from tag to “” will position the dot pointed by the to tag it at the center
of the concept map.

Attribute Description Default..

from ID of dot where line is drawn from*
style ID of linestyle type*
to ID of node where line is drawn to*

The linestyle object defines how the lines will be drawn, and the letter that will be drawn
in the middle.

Attribute Description Default..

alpha Opacity as a number from 0-100 100
col Color of line an RBG hex number 0x00ffff
id ID of linestyle*
lab Labels for line
letter Letter drawn midway through line in concept maps
wid Width of line in pixels 0

©2007-2011 Bill Ferster / The University of Virginia 34

VisualEyes Project Guide

PICTURE MAP

A picture map is kind of concept map that uses pictures that can be rolled over and
clicked on to call GLUE scripts. Picture maps are very similar to radial concept maps, but
the pictures are not structured around a circle, rather, are placed by setting the dot x and
y attributes where you want them. You can add a background image by setting the
backImg attribute to an image’s url. The frame specifies the extent of the map with the
usual background and color options.

With the pmap element, dot elements are added that will show up in the frame. As your
mouse glides over one of the dots, it will go from the transparency you set in the pmap’s
alpha attribute to fully visible as you near the center of the image.

Attribute Description Default..

alpha Opacity as a number from 0-100 100
backImg Backgound image URL
id ID of map*
wid Width in pixels 0

Elements: dot*, frame*, textformat

DOCK DISPLAY

A dock display presents a series of dots
horizontally across the screen in a similar
fashion to the application dock used in the
Apple Macintosh. The dots are typically

icons or images that are fixed to a base bar. As the mouse hovers over one, it and its
neighbors grow by the percentage specified by the growth tag. Setting the growStyle to
“single” will cause only the dot being hovered on to grow while hovered over, as
opposed to the default of “taper”, which also grows the two dots on either side of the one
being hovered over as well. The dots can have glue attached to cause some action
when clicked.. If a wid attribute is specified, the number of pictures on the dock will be
limited by that number, and green arrows will appear to scroll to show additional
pictures.

The frame object sets the bounds of the dock, but since the dock grows and shrinks
based on the number of dots within it, the dock will draw from the center of area defined
by the frame’s left and wid tags. The frame’s hgt tag defines the height of the base bar.
Setting the hgt to 0 will inhibit the drawing of the base bar.

Attribute Description Default..

alpha Opacity as a number from 0-100 100
id ID of map*
growStyle What pictures grown when moused-over: growth | taper growth
preload Load this resource before screen is shown: true | false false
wid Limit number of pix by number 0

Elements: dot*, frame*

©2007-2011 Bill Ferster / The University of Virginia 35

VisualEyes Project Guide

TIMEVIEW

A timeview resource is a display that shows events
that are timed to occur at particular dates. It is similar
to a traditional graphic timeline like MIT's Simile. The
timeview can have any number of bands, each one
having it's own time scale, allowing you to show
images that occur in vastly different scales. All the
bands are linked, so scrolling one, scrolls the others.
Each image is represented by a dot.

The frame defines the width, colors, and position of the overall display. The hgt attribute
is ignored and automatically figured out by adding the heights of the bands in the
timeview.

You can set an image background for both the whole display and individual bands by
setting the backImg attribute to the image's full URL accordingly. The border attribute
sets the spacing between bands.

©2007-2011 Bill Ferster / The University of Virginia 36

tribute.

Setting the rot attribute to something other than "0" will cause
the bands to be wrapped around a cylinder in 3D. The cap of
the cylinder can be a full oval or cut off at the top with the
capFull at

The bands are made up of individual dots, each with a date, a label, an source url, etc,
just like dots are used in the path and cmap (concept map) resource displays, and fully
clickable.

There are two additional types of timeview, controlled by the style attribute. The shelf
style is used to place dots along a scrollable shelf, and the storyline style draws a series
of lines that vary up and down.

Attribute Description Default..

backImg Backgound image URL for full frame
border Border amount in pixels 8
capCol Color of 3D cap as an RBG hex number 0x999999
center Start dots in center of band: true | false false
id ID of resource*
min Starting time of the timeview in any time format*
max Ending time of the timeview in any time format*
rot Angle of 3D rotation (in degrees, 0-45) 0
style Style of display: shelf | storyline | timeview timeview
subtitle Sub-title
timeline Sync to timeline in view: true | false false
title Title

Elements: band*, frame*, textformat

WIZARD SAMPLER

VisualEyes Project Guide

Shelf Style

A shelf element is a display tha
shows a collection of images in
scrollable frame. The shelf can have
any number of bands, each one

having it's own time scale, allowing you to show images that occur in vastly different
scales, in a similar fashion as the timeview resource element.

t

The frame defines the width, colors, and position of the overall display. The hgt attribute
is ignored and automatically figured out by adding the heights of the bands in the shelf.

The bands are made up of individual dots, each with a date, a label, an source url, etc,
just like dots are used in the path and cmap (concept map) resource displays, and fully
clickable.

The shelf has a notion of a current dot, which indicates the one that has been clicked on
last. The dot can be displayed with an edge around it by specifying an onCol (to red for
example) that will rim the currently active dot. The offCol specifies the edge color of all
the other inactive dots. You can make the edge's with bigger than the one pixel default
be setting the dot's frameWid attribute to some other value than "1".

If shelf's drag attribute is "true" (the default), the band can be scrolled by dragging it
directly. If the drag attribute is "false", the shelf cannot be dragged. If a dot is double-
clicked, any GLUE set will be called and the clicked dot will be highlighted in whatever
color you have the onCol attribute set to.

The shelf can be made to synchronize with a traditional timeline element by setting the
timeline attribute "true". Any time the timeline is moving, the shelf will move and vice
versa.

The currently active dot can be set by looking at the curDot attribute in a GLUE script.
The refresh() method, can have an optional parameter cause a particular dot within the
shelf to be highlighted and set as the curDot.

Storyline Style

Storylines are a cross between a
line chart and timeview displays.
The idea is that each line
represents a dimension of
something you wish to compare
over time. This style was
inspired by UDC Davis's Michael
Ogawa who was in turn inspired
by a comic strip on xkcd.com
that plotted movie themes.

©2007-2011 Bill Ferster / The University of Virginia 37

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 38

Each line must have a corresponding marker element that defines its color, line width,
and whether the lines are smooth or straight. You can add dots as desired just as in a
timeview display.

Data is added using the dataset() GLUE method, which contains a row for each interval
being drawn. A 0 continues the line from the center, a 1 goes up one line width, and a -1
goes down, up to +/- 32. The interval is set by the interval attribute in the band element.

Band

If timeview's drag attribute is "true" (the default), the bands can be scrolled by dragging
it directly and if a dot is double-clicked, any GLUE set will be called. If the drag attribute
is "false", the shelf cannot be dragged and a single-click will call any GLUE element set.

The timeview can be made to synchronize with a traditional timeline element by setting
the timeline attribute "true". Any time the timeline is moving, the timeview will move and
vice versa.

Each band can have a ratio set, defining how much of the display will be shown without
scrolling: Setting ratio to "100" shows all the dots in a band at once; Setting ratio to "50"
shows half the dots in a band and you need to scroll to see the rest, etc.

You can show dates within the band by setting the tickDatePos attribute to "top" or "bot".
By default, they will be drawn every 365 days, but you can have them drawn any
increment by setting the tickSpan attribute to the interval (i.e. "3650" for ten years).

Setting a band's tickWid attribute to something other than 0 will cause vertical tick lines
to be drawn from top to bottom through the band at point when dates are shown.

Attribute Description Default..

backImg Backgound image URL for band
border Border amount in pixels 8
dataPos Position of data: bot | center | top center
col Color of background as an RBG hex number 0xffffff
corner Radius of corner of frame for making rounded rectangles 0
frameCol Color of frame edge as RBG (-1 = none) -1
hgt Height of frame in pixels*
ratio Percentage of total time to show in band 100
tickCol Color tick lines as an RBG hex number 0x999999
tickDateFormat Date format for tick dates: yr|mo/yr|dy/mo/yr|mo/dy/yr|mo,dy,yr yr
tickDatePos Position of tick line date text: top|bot bot
tickSpan Number of days between tick mark lines 365
tickWid Width of tick mark lines in pixels 0

Elements: dot*, textformat

VisualEyes Project Guide

NETWORK / ORGANIZATION MAP

Network and organization maps
are similar to paths, but the dots
are arranged according to the to
and from attributes in the line
elements. The dots are not time
dependent, and lines (edges) must

be specifically drawn by setting the relationships between the dots (nodes). Labels are
automatically drawn if specified underneath the dot. The frame specifies the overall
bounds of the map.

Setting shape to "org" will connect the dots in squared off lines as in an organization
chart. Setting shape to "new" will connect the dots directly as in a network chart. The
initial dot's from attribute should be set to "" (i.e. nothing), to connect it to the screen.

Setting the shape to "free" will place the dots according to the dot's x and y attributes,
allowing for free form placement. Lines will connect between the from and to attributes
set in the line elements

Attribute Description Default..

alpha Opacity as a number from 0-100 100
backCol Color of interior wash to blot out background as RBG (-1=off) -1
id ID of map*
shape Shape of the lines connecting dots: free | org | net net

Elements: dot*, frame*, line*, linestyle, textformat

WIZARD SAMPLER

©2007-2011 Bill Ferster / The University of Virginia 39

VisualEyes Project Guide

Charts and Graphs

The VisualEyes graph element supports a number of chart types that can be drawn, including
line, area, stacked area, bar, stacked bar, scatter, bubble, picture, and pie charts.

Charts

The line, area, and bar style charts can have multiple data sets, the color and labels of
each as defined by the marker element. Charts can have x and/or y axes lines by adding
an xaxis or yaxis elements to the resource definition, The title and subtitle attributes
allow you to add titles and subtitles to the graph. The bar and area charts can have their
data sets stacked by setting the stacked attribute to true. Setting the legend attribute to
true will show whatever marker names were set for that dataset at the bottom.

Attribute Description Default..

backImg Backgound image URL
border Border amount in pixels 24
close Has close button: true | false true
depth Should it always appear on top: screen:topMost topMost
highWid Highlight width in pixels 0
id ID of resource*
legend Show legend: true | false false
radialImg URL for backgound image in radialbar chart
radialWid Diameter of backgound image in radialbar chart
subtitle Sub-title
showValues Show values on chart (pie only): none | percent | true none
stacked Are data sets stacked atop one another: true | false false
style Style: area | bar | bubble | line | picbar | scatter | area* area
title Title displayed on chart

©2007-2011 Bill Ferster / The University of Virginia 40
Elements: frame*, marker, textformat, xaxis, yaxis

VisualEyes Project Guide

Scatter / Bubble charts

Scatter and bubble charts are bi-variate, requiring 2 datasets for each plotted set. On
scatter charts, the first sets the position on the X-axis and the second one sets the
position along the Y-axis. On bubble charts, the dots are plotted along the X-axis like a
line chart, but the first data set controls the size of the dot drawn at each point. The
bubbles are scaled according their value relative to the largest data value in that first set.
The dataset’s marker wid attribute sets the maximum size of the bubbles when the data
value is the highest.

Pie chart

Pie charts get their label names and colors from the marker tags. There should be one
marker for each pie slice. You can have the slice values printing inside each slice by
setting the showValues attribute to “true”, or “percent” if you want the slice’s percentage
to the whole.

Radial bar chart

Radial bar charts are regular bar charts wrapped around an
image in the center. The image is set using the radialImg
attribute and should be square, as a circular portion will be
automatically used from it. The radialWid attribute sets the
diameter of the image. The style attribute should be set to "bar."
This style looks best with a large
number of data points.

©2007-2011 Bill Ferster / The University of Virginia 41

The stacked attribute will stack the data
sets as shown in the image on the right. Circular grid lines can
be shown by adding an xAxis element and setting its grid
attribute to "true." The frame element will set the overall size
for the chart.

There is no wizard for radial bars directly, but use the regular
chart wizard and work from there. There is an example of an
animated radial bar chart in the SAMPLER.

VisualEyes Project Guide

Xaxis / yaxis

Attribute Description Default..

autoScale Scale y axis maximum automatically: true | false true
col Color of line as RBG hex number 0x0000ff
grid Show grid lines: true|false false
majorTick Length of major tick mark in pixels 0
max Maximum data value 0
midline Draw mid line horizontally : true | false false
min Minimum data value 0
minorTick Length of minor tick mark in pixels 0
mod Number to round values by 1
pos Axis position: left|right left
showValues Show numeric values on axis: true|false true
title Title
valueCol Color of values as RBG hex number 0x0000ff
valuePrefix Prefix for value labels
wid Length of axis line in pixels 0

Elements: textformat

Legend

Attribute Description Default..

lab Labels for legends
style ID of linestyle type

Marker

Markers define the color and other attributes of how the actual data is charted. Each
dataset needs to have it's own marker element within the chart element. The col
attribute set the color the data will be drawn. datawid sets the line width for line-style
charts.

The name sets the default name of the dataset, but this is often
overwritten when setting the data using a dataset() GLUE
method. Setting the style sets the way individual points are
rendered and icons and image files can also be used. The
smooth attribute will smooth the lines in a line or area chart.

Attribute Description Default..

col Color of marker an RBG number 0x000099
datawid width of data (i.e. line or bar) 2
edgeCol Color of marker edge an RBG hex number, or -1 for none -1
name Label of marker
smooth Are lines/areas curved? false
style Shape of marker: bar | cir | tri [u | d | l | r] | .jpg | .gif
wid Width in pixels 10

©2007-2011 Bill Ferster / The University of Virginia 42

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 43

Linestyle

Attribute Description Default..

alpha Opacity as a number from 0-100 100
col Color of line an RBG hex number 0x00ffff
id ID of linestyle*
lab Labels for line
letter Letter drawn midway through line in concept maps
wid Width of line in pixels 0

Adding Data to Charts

Use the dataset() GLUE method to set the data sets with values.

glue
 [script]

 list($myData1,1,1,2,3,4,5,6,7,8,9)
 list($myData2,38,20,37,22,27,30,32,3,36,40)
 list($myData3,9,9,9,2,2,9,9,9,9,9)
 dataset(myGraph,0,Set one,$myData1)
 dataset(myGraph,1,Set two,$myData2)
 dataset(myGraph,2,Set three,$myData3)

Animating charts
You can easily animate charts by using the tweenlist() GLUE method to transition
between two lists of data.

You can also control what percent of the chart data will draw by seting the graph's
percentDone attribute from 0-1.

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 44

WIDGETS

s
e

ute.

Widgets are a type of graph that graphically displays
a single continuous value on the screen, such as a
dial, clock, thermometer, etc. The range of widgets
available will grow with time, but they all graphically
display the val attribute from min to max.

The data is plotted in the color col. The title is
displayed below the widget except for the dial, where
it’s within the dial. The numerical value is displayed
to 2 decimal places if it is less than 1, or otherwise
whole numbers. The size of round widgets like dial
only look at the wid attribute, where things lik
thermometer and number use the hgt attribute as

well. The thermometer widget looks when the wid is 1/8 the size of the hgt attrib

The spinner style will allow you to spin any icon, such as the thumb or spinner or arrow
icons like the dial style widget. The icol attribute will color the icon to a different color.
The crop and magnifier style widgets work in a completely different way than the other
widgets, as they are used to work with images rather than values.

You can dynamically set the val attribute in GLUE scripts like this:
setatt(myWidget,val,25) which would set the value of the widget with the id of
“myWidget” to"25". See the GLUE reference for more information.

Attribute Description Default..

alpha Opacity of band background as a number from 0-100 100
back Show dial/clock/spinner background: true | false true
col Color of marker as an RBG hex number 0x990000
glue GLUE id to be called if timer time is reached
hgt Height in pixels 0
icol Color of spinner style icon -1
icon Shape of spinner-style icon: arrow1 | arrow2 | thumb arrow2
id ID of resource*
left Number of pixels from left of screen 0
max Maximum data value 100
min Minimum data value 0
style clock | crop | dial | number | progressthermometer |
 spinner | timer* dial
title Title of widget to display
top Number of pixels from top of screen 0
val Initial value to display 50
wid Width in pixels 0

WIZARD

VisualEyes Project Guide

Magnifier widget

©2007-2011 Bill Ferster / The University of Virginia 45

 action.

The magnifier style widget will put magnified area of the screen atop
a an image resource and let you drag it around as you would a real
magnifying glass. Use the same image in the src attribute as the
base image you want to magnify. See the "Aerials" tab in the
Vinegar Hill project to see one in

A frame element set the size and color of the frame and the top and left attributes set its
initial screen position. Clicking on the "+" and "-" on the handle scale the zoom up and
down. Setting magnifier's frame element's the corner attribute the same size as the
frame's wid attribute will draw a circular shape.

Attribute Description Default..

id ID of resource*
src Source URL of image to show within (full path with: http://)*
style Must be magnifier*
val Initial scale to display (0-10) 2

Elements: frame*

WIZARDSAMPLER

Try it out: Add a Magnifier Widget

● Use the wizard feature to create a magnifier.
● Set the src as the image you are viewing. Getting fancier you

can set the src as another map that is overlaid over the current
image so that you could view through the magnifying glass how
an area has changed through time. Or you could set the src as
a topographical map that can be viewed through the magnifying
glass over a road map. The two maps must be precisely geo-
referenced.

● Play around with the attributes to see how they effect your
magnifier widget.

Crop widget

The crop widget enables you to create a window on the screen that contains a
subsection of an image. The frame element set the size and color of the frame and the
src sets the image to show. Use the move() GLUE method to position the image within
the frame (i.e. move(myCrop,3300,656,400,1650,1680,400,$$now,3).

Attribute Description Default..

id ID of resource*
src Source URL of image (full pathwith: http://)*
style Must be crop*

Elements: frame*

VisualEyes Project Guide

Timer widget

The timer widget is not a visual display, but is a countdown timer that triggers a GLUE
element (specified by the glue attribute) each time a certain number of milliseconds (set
by the min attribute) has been reached. For example, 1000 would cause the glue to be
called every second The max attribute set when the timer will stop (i.e. 8000 would stop
after 8 seconds). The timer widget is started and stopped by adding a refresh() GLUE
element in a GLUE script: refresh(myTimer,start) or refresh(myTimer,stop).

In addition to triggering events on a regular basic, you can load a series of dots that
define triggers at particular times to call glue elements. The dot elements must contain a
time attribute that specified when, in ms., and a glue attribute that will be called. Dots
must appear in ascending time. The $$param of the GLUE element will be set with the
index of the dot in the list of dots. You can set the dots using the filltimer() GLUE
method.

Attribute Description Default..

id ID of resource*
glue GLUE id to be called if timer time is reached
max Maximum time in ms 100
min Minimum time per glue trigger 0
style Must be timer*

Elements: dot

SAMPLER

Progress bar widget

The progress style widget will put up a progress bar
showing the percentage from 0-100% in a horizonta
bar. A frame element set the size and color of the

background frame and the top and left attributes set its initial screen position. Setting the
frame's backCol and frameCol attributes to -1 will just show the progress bar without a
background.

l

Attribute Description Default..

col Color of bar as an RBG hex number 0x990000
id ID of resource*
style Must be progress*
val Initial progress % to display 50

Elements: frame*

©2007-2011 Bill Ferster / The University of Virginia 46

VisualEyes Project Guide

Menu bar widget

The menubar style widget will put up a series of horizontal segment elements that when
clicked on activate a GLUE element. Only one can be active at a time, like a radio-button
control. The onCol and onTextCol determine the segments color and text color when
each the segment is active, and the offCol and offTextCol attributes set the colors when
inactive. You can make the segments different widths by setting equal to false, otherwise
the segments will be same width.

Attribute Description Default..

equal Make all segments equal widths: true | false true
hgt Height in pixels*
id ID of resource*
left Number of pixels from left of screen*
offCol Color of inactive segment as RBG 0x999999
offTextCol Color of inactive segment text as RBG 0x444444
onCol Color of active segment as RBG 0x999999
onTextCol Color of active segment text as RBG 0xffffff
style Must be menubar*
top Number of pixels from top of screen*
val Initial segment to activate 0
wid Width in pixels*

Elements: segment*

WIZARD

Segment

Each button is defined by adding segment elements to the widget element. If the
menubar's equal attribute is false, you can set the start attribute to set the width of each
segment independently. The start attribute is the percentage of the total width defined in
the menubar's wid attribute. Note that all the start attributes must add up to 100.

Attribute Description

glue GLUE id to be called when segment is clicked
start Percentage of total the segment takes of whole (0-100)
title Text to be displayed in the segment

©2007-2011 Bill Ferster / The University of Virginia 47

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 48

VisualEyes User Guide
Appendix

Table of contents

Formatting infobox and docviewer text
Macro tags
Special characters
Raw HTML tags

Icon types
Working with structured information
XML Data Format
Web Table Data Import
Sharing Your Project with Others
Embedding VisualEyes Projects in Web-pages
Finding URLS of Flickr Images
Using Google Earth
Geo-Referencing Maps and Images
Geo-referencing dot sizes
Using Google Docs to Store Data
Table resource

Accessing individual data elements in a table
Movies
VisEdit Options

Moving Elements in the Main Tree View
Copy and Paste of Elements in Main Tree View
Undo/Redo in Main Tree View
Data Import from Many-Eyes
Upload XML Project File Directly
KML preview

Converting AI Files to XML
Using invisible views
Using Resource Pointers
Debugging tips
Controlling an Arduino

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 49

Formatting infobox and docviewer text

The text displayed in the infobox and docviewer elements can be easily controlled using
a subset of HTML tags shown below. You can use a combination of these tags, or more
conveniently, use the macros listed below that simplify the formating.

Macro tags

Tag Function

b(text) bolds the text within the parentheses

i(text) italicizes the text within the parentheses

u(text) underlines the text within the parentheses

font(face,size,color) sizes and colors the text that follows

sp(leading,indent,tapstops)
sets the leading, indent & tabstops for text. The tabstops are
pixel location, separated by commas (i.e.
sp(0,0,100,200,300).

t() adds a tab

br() adds a line break

*link(url,text,[target])

adds a link to call up a URL when the text in the parentheses
is clicked. If the URL starts with http://, a new browser window
will open and display the page, otherwise, VisualEyes
assumes it is the name of a GLUE element and calls that
GLUE element The URL is the link that will open when the
text is clicked. A target can be optionally specified as third
parameter which sets where the page will open, a frame’s
name or the preset values of _blank, _self, _parent, or
_overlay (which opens an iFrame over the screen area). You
can also specify an image file URL (jpg/png/gif) instead of text
in the link() macro, so clicking on an image brings up a
webpage.

align(side)
sets the alignment for the text that follows. Can be left, right or
center

img(url) will show the image at the specified URL

Special characters

Code Character
< < (less than)
> > (greater than)
& & (ampersand)
" " (double quotes)
' ' (apostrophe, single quote)

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 50

Raw HTML tags

Tag Name/Function Tag Code
Anchor

Bold

Font < font [color="#xxxxxx"] [face="Type Face"] [size="Type Size"]>

Italic <i>

Paragraph <p [align="left"|"right"|"center"]>

Underline <u>

Break

Image <img src="/images/flash/dogs.jpg

List Item

Tab <tab>

Textformat

<textformat >

 blockindent Specifies the block indentation in points
 indent Specifies the indentation from the left to first
 leading Specifies the amount of leading (vertical space
 leftmargin Specifies the left margin of the paragraph
 rightmargin Specifies the rightmargin of the paragraph
 tabstops Specifies custom tab stops as an array of non-
negative
 integers.

VisualEyes Project Guide

Formatting docviewers

The docviewer display element is useful for showing collections of text and images in a
booklet-like format. It can contain any number of page elements each one with the
following information:

 title The title that appears in bold across the top.
 caption Text that appears underneath the image
 src The URL (including the http:// part) of the image, if any
 desc The formatted text to display, if any

The desc text can be formatted by using any of the tags in the previous page

For example, the following page:

 title Martin Luther King
 caption Click on image to zoom in
 src http://www.primaryaccess.org/Test.jpg
 desc b(Martin Luther King Jr.) was a i(civil

 rights
 leader) in the 1960s and led many
 fon(18,#ff0000,marches) in the southern
 United States. br()br()He was born in 1929.

And this page:

 title Martin Luther King (page 2)
 caption Click on image to zoom in
 src http://www.primaryaccess.org/Test9.jpg
 desc second page

Would yield a docviewer that looked like this:

©2007-2011 Bill Ferster / The University of Virginia 51

P
 Page 1 Page 2

VisualEyes Project Guide

Icon types

There are over 100 included in VisualEyes that can be used on dots and chart markers.
They are vector-based, so they do not get pixilated when scaled up. To use one, look up
its name in the drawing below and add icon: as a prefix to the name (i.e. icon:comment)
in the dot style attribute.

Icons can be scaled up and down by setting the wid and hgt attributes to the desired
width and height, and rotated any angle using the rot attribute. If you specify only the
wid, or only the hgt, the other factor (wid or hgt) will be automatically scaled to match its
original shape. You can distort that shape by setting the wid and hgt together. By default,
icons are colored the way they are in the drawings below, but you can color icons using
the icol attribute in a dot.

We have been given permission to use 100+ great icons designed by Joseph Wain from
Glyphish.com. They are drawn in black, and any gray portion has its transparency set,
so when they are colored using the icol attribute, the grey areas come out in shades of
the icol.

©2007-2011 Bill Ferster / The University of Virginia 52

VisualEyes Project Guide

Dot Drawn Style Types

There are a number of drawn shapes that can be used on dots and markers. They can
be scaled up and down by setting the wid attribute to the desired width. Setting the col
attribute will set the color they will be drawn in:

bar A filled bar
but A filled bar with circular ends
cir A filled circle
rbar A filled bar with rounded corners
span A two-headed arrow with text beneath
star A filled 5-point star
trid A filled triangle facing down
tril A filled triangle facing left
trir A filled triangle facing right
triu A filled triangle facing up

Sign style

Signs are a combination between an image dot and an rbar style dot. The
col, frameWid, and frameCol attributes set the background box. The corner
attribute sets the size of the border (default is 8), and the text wraps to the
top, with the alignment controlled by the labelPos attribute.The image is set
by appending the style attribute with the url of the image, like this:
sign:http://www.mysite.com/image.jpg.

©2007-2011 Bill Ferster / The University of Virginia 53

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 54

Working with structured information

One of the things that makes VisualEyes particularly useful is its ability to manage, ask
questions of, and display elements from large collections of structured information.

What is structured information?

Structured means that instead of the data and information presented like a text
document, particular kinds of data are grouped together in meaningful groups. In
contrast, unstructured information is like a Word document file. All the information is put
together with nothing separating the important elements like this box.

This may work for small amounts of information, but imagine needing to find all the men
that passed the test if there were 400 people in the class. It would be very difficult to
automate, as the computer would have a hard time telling the ages from the grades.

One solution is to structure the data. That is, if we know an item is a grade, put it in the
"grade" group, while an item that is a name would go into the “name” group. We call
these collections of structured information tables, and they are really no different than an
ordinary Excel spreadsheet.

name sex age grade class
Bob male 22 100 1

Ted male 43 40 2

Carol female 33 90 1

Alice female 23 75 2

Both a spreadsheet and a table consist of multiple rows of information, sorted into useful
groupings in columns. An example of this shown in the box to the left.

Each column is a grouping of related things, called a field. The first row defines the
names of the fields, followed by any number of rows that contain the information for the
fields. In this table, there are 4 people (Bob, Ted, Carol, and Alice) and 5 fields (name,
sex, age, and grade, and class).

Having the data structured makes it easier to make sense out of the table, and ask it
better questions. Google is essentially an unstructured table of the web. When we
search, it looks to see if any of our search words appear in a web page, and return those
pages if it does. An example of an unstructured search would be if you searched for
“Tiger” Woods, the golfer. Your search results would include data about the golfer as
well as about the feline predator. By comparison, a structured search would involve
searching specified fields in a structured table. For example, to conduct a structured
search for the occurrences of “Tiger” as a name, you would indicate that you are
searching for matches in a structured table’s name field." Structure adds a new level
semantic meaning to our searches.

On the web, tables are stored in programs called databases. VisualEyes has a simple
database built-in to support you in structuring your data into tables, and then to easily
and quickly search for the portions of information you want from your tables.

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 55

Putting your table online

The VisEdit webapp has a feature that will take a spreadsheet file, convert it to XML and
store it on the VisualEyes server for you. As a result, you can use Excel (or just about
any spreadsheet application) to import data to the VisualEyes server so that you can
access it online. What follows are the steps to convert your data to XML:

1. Open and format your spreadsheet. To begin converting your data, the first row of
your spreadsheet should contain a list of single-word field names by which each
column can be referred (i.e. name, sex, age, grade, id in the previous example). The
rows that follow within each column can contain any number of items of data sorted
across the horizontal fields.

2. Save your spreadsheet using the CSV (comma delimited values) or tab-delimited
text file formats available from most spreadsheets and database programs. To do
this, use the “Save As…” option in the File menu and set the “Save as type” option to
CSV (Comma delimited) or “Text- (Tab delimited)” and save to a file.

3. Go to the VisEdit Editor. In the Tools menu of the VisEdit editor, select the Convert
Data File to XML option.

4. A file dialog will prompt you to locate on your hard drive, the spreadsheet you want to
convert.

5. Once selected, your spreadsheet will appear in the screen.

6. Make whatever changes you need to the raw text in this view, such as editing the
field names on the first line so that they do not contain any spaces. We like to use
camelCase (first letter of words in caps, except the first. i.e. myFirstName, myAge,
etc.) as it makes for a pronounceable field names.

You can load CSV files directly to the server using the "Upload CSV file to server" option
in the Tools menu and it will be saved to server’s data folder with your user number its
name (i.e. http://www.viseyes.org/data/1-BobTed.csv). You can upload revised versions
over this at any time if your data changes.

NOTE: This will add 10-20 seconds to the load time when the project is run, so when
you have finished making changes to the file for a while, save it as a native XML file for
faster loading:

Click on the Convert to XML button to convert your spreadsheet data to XML format.
You will be asked to type a name for the table to store it under. Click on the Upload to
server button to save that file on VisualEyes server’s data folder with your user number
and the name you gave it (i.e. http://www.viseyes.org/data/1-BobTed.csv).

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 56

Querying a table

The process of "asking" a table for certain data is called querying. You do queries all the
time on the web when you conduct a search. For example, when you try to find a movie
in Netflix, you ask the Netflix server to search its table of movies by matching the words
you typed in. Behind the scenes, your search words are sent to the server at Netflix,
which "asks" the database to look through the genre you are in and return the titles of
any films in which all your search words can be found. After a few seconds, Netflix
displays a list of search results. The same process occurs when you search for books at
the library website, Google, and even Apple’s iTunes, which is no more than a simple
database.

The parts of a query

To conduct a query in VisualEyes, you need three basic pieces of information to get the
data you want from a given table:

1. The name of the table
2. The conditions
3. The desired fields from the source if the conditions are met

The name of the table

The name of the table that contains the raw information you want to pick and choose
from. Since any given project might have many tables, to choose from, you need to
specify one of them by giving its name.

The conditions

The conditions that need to be met before any rows are retrieved from the source table.
Conditions are statements like, "all the people who scored below 70" but in a form that
the computer can understand, such as "grade LT 70". We take advantage of the
structured nature of our data and look at the "grade" field to return only people who have
grades less than (LT) 70.

A single condition like "grade LT 70" is called a clause. Each clause is said to be true if
the condition is met (i.e. the grade is 50) or false if the condition is not met i.e. the grade
is 80). Each clause had three parts:

1. The field to look at
2. The conditional (i.e. GT, LT, EQ ...), and
3. The value to compare with, which can be a number, word, sentence, or another

field name.

The conditions can get more specific by adding multiple clauses like any Boolean
search. In our example, "men who scored over 60 and are under 40" is a condition that
translates into three clauses joined by "sex EQ male" AND "grade GT 60" AND "age LT
40." The AND that separates each clause is called an operator and says "return rows if
both the clauses it is between are true." Alternatively, we could use the OR operator
which says "return rows if either of the clauses it is between are true."

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 57

Which fields to return

Your table might have 5 fields, but you may only need to get one, such as the “name”.
To do this, you need to specify which fields to include in the results. Specifying "name"
will return just the name (i.e. Bob), and "name+age" will return the name and age (i.e.
Bob, 22). If you want all the fields, use a star ("*") (i.e. Bob,male,22,100,0).

Glossary

Clause A condition that must be met if an item is to be included
Conditional A comparison such as less than, greater than, equals, etc.
False The result of a clause that makes it omitted from in the results
Field A category that an item is separated by type
Item A line of information separated by fields
Operator Used to join clauses together
Query A request for a subset of table items meeting certain conditions
Results A list of items that met the conditions posed
Structured Information is sorted into fields
Table A structured collection of items organized into fields
True The result of a clause that makes it included in the results

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 58

XML Data Format

The easiest way to import data into VisualEyes is using Excel to create a spreadsheet.
The top line should contain the field names and the following lines that data for those
fields. For example, this format defines 3 fields, name, sex, age and has 4 people’s
information:

name sex age
bob male 22
ted male 43
carol female 33
alice female 23

Save this out as a tab-delimited text file in Excel by selecting “Save As…” in the File
menu and setting the “Save as type” option to “Text- (Tab delimitated)” and saving to a
file. The VisEdit editor has a tool that will allow you to load that file from your computer to
the screen area, where it will be formatted into an XML format like this:

<TABLE a=”name” b=”sex” c=”age”>
<ROW a=”bob” b=”male” c=”22” />
<ROW a=”ted” b=”male” c=”43” />
<ROW a=”carol” b=”female” c=”33” />
<ROW a=”alice” b=”female” c=”23” />
</TABLE>

Click on the “Upload to server” button and that file will be saved on VisualEyes server’s
data folder using your user id and a name you gave it (i.e. /data/1234-MyXMLFile.xml).

Web Table Data Import

Existing websites are a great good of data for projects, for example the Historical
Census Browser (http://fisher.lib.virginia.edu/collections/stats/histcensus) is a great
way to get county-level census data from 1790 to 1960. Once you have found a table of
data you want, select the entire table and copy (CTRL-C) it into your computer’s
clipboard.

Paste (CTRL-V) this data in an open Excel spreadsheet. The first line should contain a
list of single-word field names that each column can be referred by (i.e. name, sex, age
in the precious example).

Save this out as a CSV (comma delimited values) or tab-delimited text file in Excel by
selecting “Save As…” in the File menu and setting the “Save as type” option to CVS
(Comma delimited) or “Text- (Tab delimited)” and saving to a file.

In the Tools section of the VisEdit editor, select the Convert Data File to XML option.
Make whatever change you need to the raw text. Click the Convert to XML button. Edit
the field names on the first line so that they do not contain any spaces. Click on the
“Upload to server” button and that file will be saved on VisualEyes server’s data folder
using your user id and a name you gave it (i.e. http://www.viseyes.org/data/1234-
MyXMLFile.xml).

http://fisher.lib.virginia.edu/collections/stats/histcensus
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 59

Sharing Your Project with Others

The adding the project number to the following URL will allow anyone with an Internet
connected web browser that has the Flash plug-in installed to see your project:

www.viseyes.org/show?id=xxxx

Replace xxxx with your actual project number, which is show at the top right corner of
the VisEdit screen.

Embedding VisualEyes Projects in Web-pages

The Easy Way

While you can always show your VisualEyes project using our website using the
www.viseyes.org/show?id=xxxx link, you can also embed it more seamlessly into your
own website by adding 2 lines to the page you want to embed the project on your site:

<script> var id="xxxx"; var bcol="#ffffff"; var wmode="opaque"; </script>
<script src="http://www.viseyes.org/embed.js"></script>

Replace the xxxx with your actual project number, which is show at the top right corner
of the VisEdit screen. If you want a different background color than white, replace the
ffffff with the color you want behind the tabs and under the timeline. You can make that
area transparent by changing opaque to transparent.

The Hard Way

If you want to put a copy of the actual SWF file on your page, the process is more
complicated. The reason to do this is to freeze the version of VisualEyes and ensure the
version you are embedding will not change. This is important for museums and other
institutions that require the utmost of stability.

To do this, you will need to add two files from us, the SWF file called VisualEyes.swf and
a JavaScript file called “localembed.js.” Email me at bferster@virginia.edu for them.

Put both files in the same folder as your webpage you want to embed the project in and
add the following lines to that file:

<script> var id="xxxx"; var bcol="#ffffff"; var wmode="opaque"; </script>
<script src="localembed.js"></script>

Replace the xxxx with your actual project number, which is show at the top right corner
of the VisEdit screen. If you want a different background color than white, replace the
ffffff with the color you want behind the tabs and under the timeline. You can make that
area transparent by changing opaque to transparent.

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 60

Finding URLS of Flickr Images

An image used in VisualEyes needs to be online to be included in a project. Yahoo's Flickr
photo sharing site (www.flickr.com) is free and easy way to put images online. When you
upload a picture to Flickr, it loads your original image and stores it, as well as making 5 jpeg
copies of varying widths:

 Square (75 pixels)
 Thumbnail (75-100 pixels)
 Small (100-200 pixels)
 Medium (400-640 pixels)
 Large (1024 pixels)

If the image is in landscape mode (i.e. its width is greater than its height), the width will be
set to the pixel number listed above and the heights scaled are proportional to the width. If
the image is in portrait mode, the height will be set to the pixel number listed above and the
width scaled are proportional to the height.

It is best to use an image closest size to how it will be displayed. Too small, and it will
appear pixilated, too big, and it will take too long to load and not look as good as one better
fitted.

Each size has its own URL. To find it, click on the "All Sizes" item in the picture's "Action"
pull-down at the top. Click on the size you want from the "Available sizes" menu, and that
size will appear. Right-clicking (Control-click on Mac) on the "Download" will bring up options
to copy the link location (called a "shortcut" in IE) to the clipboard, where you can use it as
the image's src attribute. You can delete the _d just before the .jpg extension, as it is not
needed.

NOTE: Unless you have a paid Flickr "Pro" account, you will not be able to access the
original size image. The shanticohort account is Pro but they are inexpensive ($25/yr) if you
need your own.

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 61

Using Google Earth

You can dynamically show .KML and KMZ Google Earth files in a browser page by using
the link() glue method and calling the kml.php file as the url. To call a Google Earth file
from a glue script, add a link() method to the script. The link() method has two primary
parts, the url and the target.

The url consists of 2 required and one option parts to it: 1) the KML web page:
http://www.viseyes.org/kml.php 2) the url of the KMZ or KML file: ?url=http://
and optionally 3) display option letter: &show=xxx.

There are a number of options we can set by adding letters in place of the x's :

Option code Function

r Shows the roads

b Shows country/state borders
t Shows terrain
3 Shows 3D buildings (if any)
s Shows status bar on bottom with lat/lon

l Shows scale legend

Target sets where the page will open, which can be set to the frame’s name or the
preset values of _blank, _self, _parent, or _overlay (which opens an iFrame over the
screen area.

For example, if we wanted to show the following KMZ file at

http://www.viseyes.org/map.kmz in an overlay window,the url would be:

link(http://www.viseyes.org/kml.php?url=http://www.viseyes.org/map.kmz,_overlay)

If we wanted to show roads and the scale in a new brower page:

link(http://www.viseyes.org/kml.php?url=http://www.viseyes.org/map.kmz&show=rl,_blank)

NOTE: you will need to have the Google Earth Plug-in installed on your web browser,
from http://earth.google.com/plugin

http://earth.google.com/plugin
http://earth.google.com/plugin
http://earth.google.com/plugin
http://earth.google.com/plugin
http://earth.google.com/plugin
http://earth.google.com/plugin
http://earth.google.com/plugin
http://earth.google.com/plugin
http://earth.google.com/plugin

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 62

Geo-Referencing Maps and Images

You can specify dot coordinates in longitude and latitude, instead of specifying the
coordinates in x and y pixel values. This makes it easier to use locations from Google Maps
and other GIS-aware applications. To do this, we need geo-reference (a GIS term) the map
that the dots will be placed over to correlate the longitude and latitude values to their
position on the map or image.

1. Choose two points on the map, one in the upper left corner, and one in the bottom
right.

2. Get the pixel position for each point by clicking on the point and pressing the "Alt"
key when viewing the project. The screen position will appear in the bottom right of
the screen.

3. Find the latitude and longitude and for each point. The longitude (a negative number
for US locations)

4. Add 4 new attributes to the image or map element, matching a pixel value to a geo-
coordinate, separated by a colon. The gl is the left side, gr the right side, gt the top,
and gb the bottom (i.e. gl="49:-78.500488" gt="41:38.041771" gr="759:-78.46872"
gb="460:38.027124")

5. You can now specify the dots x and y attribute in longitude and latitude coordinates
(i.e. x="-78.500488" y="38.027124). In the path element containing dots add an
attribute called res to tell the path to rectify the dot to the particular resource you
added the gl/gt/gb/gr attributes to (i.e. res="myMap).

For an example, see the "Geo-reference a map / Google Earth" section in the project
SAMPLER

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 63

Geo-referencing dot sizes

Dots can be placed according to latitude and longitude, instead of pixels by attaching the
<path> to a geo-referenced map using the res attribute. (See section on geo-referencing
for more information.) Typically, the width and/or height of the dot's graphics is set in
pixels, such as a star, icon, or circle, but sometimes, you want to map an area based on
the extent in latitude and longitude. To do this, specify the wid and/or hgt attributes in
negative decimal degrees.

This is most often done when geo-referencing an historic map using Google Earth. Once
referenced, we need the extent of the map. To find it, right-click on the layer in Google
Earth and select the "Properties" item. When you click on the "Location" tab, the extent
will show as North, South, East, and West boxes.

The wid is found by subtracting the East side of the area from the West side. The hgt
found by subtracting the North side the area from the South side. The fact that these will
both be negative number will alert VisualEyes to convert them to pixels from degrees:
wid=west-east and hgt=south-north.

The x and y <dot> attributes point to the middle of the area. To find the middle (called a
centroid) from the extent, the x is the West + (East-West) /2 and y is South + (North-
South)/2.

Click on the "Snapshot View" to in the right click menu to save the current view as the
default vantage point when your KML file is launched by Google Earth or VisualEyes.
Also, make sure that the layer or folder you snapshot is not in the "Temporary Places"
folder, but directly under the "My Places" folder.

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 64

Using Google Docs to Store Data

VisualEyes supports a number of formats for storing table data, XML, CSV, ManyEyes,
and Google Docs Spreadsheets. Of all the choices, Google Docs is the fastest to use
when developing your project.

Google Docs has an online Excel-like spreadsheet web-app that allows you (and
collaborators you invite) to edit a spreadsheet hosted by Google. You can use it as you
would a CSV file by publishing it and using the link in your src attribute for the XML
resource element in your project.

There are many advantages to this strategy: The link will automatically be up dated as
you change the data, with needing the tedious uploading of the new data to the server;
Google Docs maintains a revision history of previous versions and Google keeps your
data safe. I would recommend saving a copy on your computer's hard drive just as a
precaution. When the data stops being changed, it is probably best to save a CSV file
from Google Docs, upload it to the VisualEyes server, because it does take 5-20
seconds longer to load from Docs than a CSV file.

To use Google Docs Spreadsheets in your project

1. Sign in to your Google mail or web account.
2. Select "Documents" from the "more" link at the top of the Google search page.
3. Create or import your data from an existing spreadsheet.
4. Share the spreadsheet by clicking on the "Share" button at the top right corner.
5. Change the permission visibility so "Anyone who has the link can view."
6. Click on the triangle to the right of the "Share" button.
7. Select "Publish as a web page" option from the "Share" pull down menu.
8. Check "Automatically republish when changes are made."
9. Click the publish button.
10. The link will appear in the section called "Get a link to the published data."
11. Copy the link and use it as the src attribute in the XML resource element.

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 65

Table resource

The table resource element creates an empty table with whatever fields you want, rather
than importing CSV or XML files. This is useful when you want to make a table from a
subset of some elements in an imported file.

The src attribute provides the list of fields for the new table. The fields are separated by
a "|" (pipe), so for example a src attribute of "name|age|sex" would create a table
resource with three fields called name, age, and sex.

The table resource is typically filled with data by querying another table with a GLUE
script. Suppose we had a table we imported with hundreds of name, but only wanted
those who attended "Wilson" in our new table:

query(*myTable.name,schoolList,student,school EQ Wilson,0)
query(*myTable.sex,schoolList,age,school EQ Wilson,0)
query(*myTable.age,schoolList,sex,school EQ Wilson,0)

The first line fills name field in the new table we created with the results of a query on the
schoolList table, extracting a list of students whose school field was Wilson. Note that
the name of the field in our new table (name) does not need to match the table in the
query (student). The second line adds the sex and the third line adds the ages.

You can also set individual table resource members using the table() GLUE method,
which has options to add a new row, or set a row's field value.

Accessing individual data elements in a table

Tables are typically accessed by querying the data with a query() method, but you can
access individual elements by specifying them by field. For example, if we had a
resource with the id of "myTable" and a field called "name", status(*myTable.name)
would print a list of all the rows of the name field on the screen and
status(*myTable.name.1) would print the 2nd name (the count starts at zero).

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 66

Movies

Setting the glue to some glue object will cause that glue object to be called every n ms
specified by timer. This is useful for controlling other screen elements to do something at
some time in the movie's playback.You can also control movies from a GLUE script. See
the movie() method for more information.

MORE TO COME...

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 67

VisEdit Options

Moving Elements in the Main Tree View

The UpArrow and DnArrow keys will allow you to navigate through the Main Tree view of
your project. The Home key will bring you to the top. To make editing the XML directly
less needed, using the Shift-UpArrow or Shift-DnArrow keys will move the currently
selected element up or down in the Tree. Any sub-elements within that element will also
be moved. There are options in the Edit menu for doing this as well.

Copy and Paste of Elements in Main Tree View

To make editing the XML directly less needed, selecting the Copy option from the Edit
menu (or hitting Ctrl-C) will copy currently the selected element to the clipboard. Any
sub-elements within that element will also be copied. Selecting the Paste option from the
Edit menu (or hitting Ctrl-V) will copy any elements in the clipboard just beneath
currently the selected element in the Tree.

Undo/Redo in Main Tree View

You can click on the Undo option in the Edit menu to go back to a previous step. This
works similarly as in programs like Microsoft Word. You can go back to your last 100
actions. Selecting the Redo element in the Edit menu will "undo" the undo. You can also
undo the last 32 keyboard actions by hitting the Ctrl-Z key. This key is also available
when editing GLUE and <infoBox> script areas.

KML preview

If you click on a or KML file in the Show/My Data files menu option, a new browser
window will appear, and that KML file will show in that window using the Google Earth
plug-in.

The text in that KML file will be shown in the help area as well. At the end of the KML
file, a dot element containing the centroid information of any map overlay in the KML file
used for geo-referencing the dot will be displayed (see: Geo-referencing dot sizes).

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 68

Data Import from Many-Eyes

IBM’s Visual Communication Lab has a great free website (www.many-eyes.com) for
visualizing, storing and sharing data sets. You can automatically pull them in as an xml
data source by using a link to its data file. You can import these data sets dynamically
into History browser by locating a data set or uploading your own to their site. Click on
the link called Data File and use that URL when defining an xml resource. This is a
simple example of a data set on ManyEyes:

resource
 type=”xml”
 id=myData”
 src=”http://manyeyes.alphaworks.ibm.com/manyeyes/datasets/things-
 2/versions/1

Alternatively, you can copy the data on our server by doing the following: Add “.txt” to the
url in a web browser, (ie
http://manyeyes.alphaworks.ibm.com/manyeyes/datasets/things-2/versions/1.txt) and
highlight the data manually (CTRL-A) and copy the data (CTRL-C) onto your computer’s
clipboard.

In the Tools section of VisEdit, select the Convert Data File to XML option. Instead of
loading a file to convert, click “Cancel” and paste (CTRL-V) the data over the instructions
in the text box. Click the Convert to XML button. Edit the field names on the first line so
that they do not contain any spaces. Click on the “Upload to server” button and that file
will be saved on VisualEyes server’s data folder using your user id and a name you gave
it (i.e. http://www.viseyes.org/data/1234-MyXMLFile.xml).

Upload XML Project File Directly

While it is possible to edit the XML directly using the VisEdit editor, many people making
projects will feel more comfortable editing the XML in a text editor such Oxygen or
DreamWeaver. These editors have good undo/redo and context coloring the make the
process much easier.

To support this work flow, there is an option in the VisEdit File menu called “Upload
Local XML File” which will bring up a file box and allow you to select an XML file from
your computer’s hard drive and upload it to your currently active project. Once uploaded,
it will open the same browser window that the “Save and Preview” button uses to
preview the project.

The flow goes like this:

1. Edit XML in DreamWeaver
2. Save file to disk in DW
3. Upload Local XML File in VisEdit editor
4. See how it looks
5. Go back to step 1.

http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F1234-MyXMLFile.xml&sa=D&sntz=1&usg=AFQjCNHq_iD3n0Njt5Rnt1vk4mpywisS_w

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 69

Converting AI Files to XML

VisualEyes needs vector graphics images, such as those that come from Adobe
Illustrator and arcGIS to be converted to XML format in order to be used as a map
resource. We only support straight lines and polygons and only version 8 files at present.

To convert a file:

1. Save the file in Adobe Illustrator format (version 8) from either arcGIS or any
program that output's .ai files, such as Fireworks and Illustrator.

2. Log into VisEdit and select the "Convert data/AI file to XML" option from the
Tools menu. Find the .ai file on your computer using the file finder that pops up.

3. In a few seconds, the .ai file's data will appear in the text box.

4. Click on the "Convert to XML" button and the .ai data will be converted to XML
displayed. You can modify any attributes, such as col, edgeCol, alpha, or
edgeWid attributes.

5. The "Preview" button will show and hide a preview of your graphic on the screen
area.

6. Click on the "Upload to Server" button and after giving a file name to store it by,
the file will be saved on the VisualEyes server and the name of the file
(i.e.http://www.viseyes.org/data/92-test.xml) will be shown on the screen for you
to copy and paste into the map resource's src attribute.

7. Select the "Go to View" option in the View pull-down menu and select "Main”

8. Tree View" to exit the Tool menu.

Conversion options

By default, your map will be rescaled to 800 pixels across. To change that, type
"width=####" in the textbox next to the "Preview" button, where "####" is the new width
(i.e. width=1200 would scale the graphics so they are 1200 pixels across.

Similarly, you can offset the graphic horizontally by adding "left=####" , and vertically by
adding the words "top=####" , each offset or width separated by a comma (i.e. (i.e.
width=900,left=10,top=100 would scale the graphics so they are 900 pixels across,
starting 10 pixels from the left and 100 from the top.

Map XML options

There are some options you can edit in the shapefile XML before saving it to the server.
The offx="xxx" and offy="xxx" attributes will position the map around the screen. The
hair="true" option will render any lines or edges of polygons as hairlines, meaning they
will not get larger when you zoom in. The smooth="true" option will render any lines or
edges of polygons as curves rather than straight lines.

http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F92-test.xml&sa=D&sntz=1&usg=AFQjCNGU5poISPV1L1_GSpaDS4OJDm0fPw
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F92-test.xml&sa=D&sntz=1&usg=AFQjCNGU5poISPV1L1_GSpaDS4OJDm0fPw
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F92-test.xml&sa=D&sntz=1&usg=AFQjCNGU5poISPV1L1_GSpaDS4OJDm0fPw
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F92-test.xml&sa=D&sntz=1&usg=AFQjCNGU5poISPV1L1_GSpaDS4OJDm0fPw
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F92-test.xml&sa=D&sntz=1&usg=AFQjCNGU5poISPV1L1_GSpaDS4OJDm0fPw
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F92-test.xml&sa=D&sntz=1&usg=AFQjCNGU5poISPV1L1_GSpaDS4OJDm0fPw
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F92-test.xml&sa=D&sntz=1&usg=AFQjCNGU5poISPV1L1_GSpaDS4OJDm0fPw
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F92-test.xml&sa=D&sntz=1&usg=AFQjCNGU5poISPV1L1_GSpaDS4OJDm0fPw
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F92-test.xml&sa=D&sntz=1&usg=AFQjCNGU5poISPV1L1_GSpaDS4OJDm0fPw
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F92-test.xml&sa=D&sntz=1&usg=AFQjCNGU5poISPV1L1_GSpaDS4OJDm0fPw
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F92-test.xml&sa=D&sntz=1&usg=AFQjCNGU5poISPV1L1_GSpaDS4OJDm0fPw
http://www.google.com/url?q=http%3A%2F%2Fwww.viseyes.org%2Fdata%2F92-test.xml&sa=D&sntz=1&usg=AFQjCNGU5poISPV1L1_GSpaDS4OJDm0fPw

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 70

Feature IDs

By default each new polygon added gets a new unique id number identifying it as a
feature. This is the number that will be returned to identify the feature when clicked.
These id's can be edited if desired and there are some options for changing the id's
using GLUE featureID() method.

Interactive Maps

Each polygon in a can be clicked on and the feature number returned in a list member
named $$click in GLUE scripts. By default, each feature is give a number corresponding
to its order in the list, but you can set the ids to particular numbers if desired. You can
set the individual feature's edge and interior fill color by setting the cols and edges lists
(i.e. set(*myMap.cols.4,0x990000) sets the 5th feature to red).

CS2-CS5 AI Files

Loading .ai files created in Adobe's Creative Suite is complicated by the way they
encode them internally. We can read them, but the process is convoluted. Open your CS
.ai file in a text editor, and copy the contents of the file to your clipboard. Then load a
"dummy" version 8 file in VisEdit. Replace the text that was just loaded with the contents
of the CS file you copied. Converting and saving will now work.

NOTE: A map resource needs to be refreshed in order to be drawn. To do this, add a
line to a GLUE script that says: refresh(myMap), where "myMap" is the id of your map
resource.

Using invisible views

In general, project views appear underneath the tabs when created, but views can also
be created invisibly in the background, and explicitly called to the screen when desired.
You may have too many views and they won't fit on the screen, or want to dynamically
pull up a view based on some actions. Setting the visible view attribute to "false" will
allow you to add and edit a new view in the project, but it will not appear unless it is
called using the setview() GLUE method. You must also add an id attribute to refer to it
by.

Whenever you want that view to appear, add a GLUE element in the view you want to
replace with the a script containing the following line: setview(myView), where myView is
the id of the hidden view you want to see. Whenever that GLUE element is called, it the
view in which it resides will be replaced the one called id. The old view can be replaced
by a setview() call to its id attribute, or simply clicking on any tab on the screen.

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 71

The persistence of dot attributes

Since the dot elements are very frequently used and many dots share attributes in
common, we have tried to minimize the need to redundantly specify most attributes.
Most dot attributes, with the exception of x, y, and icol store their last specified values,
so if those values are not explicitly changed, they default to the last time they were set.

In the following example, a path has four dots associated in it:

Dot 1 x=100 y=200 style=cir wid=20 col=0x990000
Dot 2 x=110 y=210
Dot 3 x=120 y=220 col=0x000099
Dot 4 x=130 y=230 style=star

Each dot specifies the x and y attributes, because each dot has a unique position on the
screen, but the other attributes come and go as needed for each of the other four dots:

 Dot 1: Sets the style to a circle, the wid to "20" pixels and the col to "0x990000"
 Dot 2: Draws the same style, wid and col, since they were not changed.
 Dot 3: Uses the same style and wid, but the color is now set to "0x000099".
 Dot 4: Uses the same style and blues col, but the style is now a "star".

This same idea works when loading dots via an XML or CSV file. Assuming you had a
list of x, y, or other attributes in a file, any constant attributes can be inherited from a dot
element in the path like this:

resource
 id=myData type=xml src=mydata.xml
path
 id=myPath style=cir wid=20
 col=0x990000 glue id=fillDots

 glue [script] dotfill(myPath,myData)

Using Resource Pointers

Resource pointers allow you to use a data resource, such as a CSV or XML file from
another view without needing to reload the file again in the current view. This saves the
time needed to reload large data files that have already been loaded in another view.

The resource must be in a previous view to the one you want to add access to, and have
an id attribute set, so you can identify it using the src attribute.

Attribute Description Default..

id ID of resource to point to in other view*
src ID of view where resource was first loaded*
type Must be "pointer"*

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 72

Debugging tips

Loading hang-ups

If you are preload-ing an image, xml or map resource (the default), VisualEyes will wait
to start until the resource has been loaded. Unfortunately, it is hard to know just which
resource doesn't load if it hangs. Hitting the [esc] key will stop the waiting a place a log
of the loading process into your clipboard. To view it, open up a text editor to see which
one started loading, but never finished.

Saving Versions

You should periodically save a version using Save version option in VisEdit's File menu.
It is sometimes easier to go back to a previous version of your project than figuring out
what you did wrong. Similarly, you may want to keep a local copy of the XML script on
your computer. To do this:

1. Select the Edit XML View option from the menu in the bottom-right in VisEdit.
2. The XML for your project will appear in the window.
3. Select all the text using CTRL-A.
4. Copy the text to the clipboard using CTRL-C
5. Open up a text editor (TextEdit, NotePad, Word, etc.)
6. Paste the text into a the text editor using CTRL-V.

If ever you need to use the version, reverse the steps:

1. Open up a text editor containing your script.
2. Select all the text using CTRL-A.
3. Copy the text to the clipboard using CTRL-C
4. Select the Edit XML View option from the menu in the bottom-right in VisEdit.
5. Paste the text into a the text editor using CTRL-V.
6. Select the Main Tree View option from the menu in the bottom-right in VisEdit.

VisualEyes Project Guide

©2007-2011 Bill Ferster / The University of Virginia 73

Controlling an Arduino

VisualEyes can control an Arduino processing card to read and write its various analog
and digitals pins. Because Internet security prevents a Flash application to talk directly
with your computer's USB port, you need to install a serial proxy server and use the AIR
version of VisualEyes. Both parts can be found as a zip file here:
www.viseyes.org/arduino.zip.

Install the Arduino software from their site and make sure it is connected and configured
properly. Double click on the VisualEyes.pde file to load the sketch into the Arduino. To
verify that it's working, click on the Serial monitor button, and set the baud rate to
57600, and the state of the pins should stream in the monitor.

Setup for Macintosh

1. Unzip the arduino.zip file into a folder called VisualEyes within your
Applications folder.

2. With the Arduino connected and running, run Arduino.app
3. Open the Tools/Serial port option from the menu. There will be a line that starts

with /dev/cu
4. Write this name down
5. Double click on the file named serproxy.osx.cfg. It will appear in the TextEdit

app.
6. You will see a line that says: serial_device1=/dev/cu/usbmodem411
7. Replace the dev/cu/usbmodem411 portion with the name you wrote down.
8. Save the file
9. Double click on StartProxy.command file
10. It will start the Terminal App and should say Waiting for clients.
11. Double click on the VisualEyes.air app and install it in the folder.
12. Double click on the VisualEyes.app in the VisualEyes folder and enter the

project number you want to run.

Setup for Windows

1. Unzip the arduino.zip file into a folder called VisualEyes within your Progam
Files folder.

2. With the Arduino connected and running, run Arduino.app
3. Double click on setproxy.exe file
4. It will start the Command monitor and should say Waiting for clients.
5. Double click on the VisualEyes.air app and install it in the folder.
6. Double click on VisualEyes in the Start menu and enter the project number you

want to run.

Getting values from the Arduino

When the Arduino is running, the arduino(read) method will poll the card and retrieve
the values on the pins in a global list called $$arduino. The first 6 items are analog
pins 0-5 and the last 5 items are the digital pins 2, 4, 7, 8, and 12.

	How VisualEyes works
	Views
	Resources
	Controls
	Displays
	GLUE
	Elements and Attributes
	Elements
	Attributes and Values
	Script Text

	Project Sampler
	A note on the formatting in this guide

	Getting started with VisEdit
	Creating an account and logging in
	Navigating the element tree
	Navigating the attribute editor
	File, Edit and Tool Menus
	FILE
	EDIT
	TOOLS

	Using Wizards
	Viewing your project

	Creating VisualEyes Projects
	The structure of a project
	FRAME ELEMENT
	TEXTFORMAT ELEMENT
	LOGO ELEMENT
	TAB ELEMENT
	VIEW ELEMENT

	Resources
	Common resource attribute tags
	IMAGE RESOURCE
	MOVIE RESOURCE
	Using movies from YouTube

	MAP RESOURCE
	GMAP RESOURCE (GOOGLE MAP)
	XML RESOURCE
	TABLE RESOURCE

	Controls
	CONTROL PANEL
	Control Panel frame
	Control Panel Items

	TIMELINE
	Punctuated time bar
	Segment
	Animation Player
	Timeline Labels

	ZOOM CONTROL
	OVERVIEW

	Displays
	INFOBOX
	Tabbed infoboxs

	DOCVIEWER
	Page

	PATH
	Using paths as selectors and menus
	DOT
	CONCEPT MAP
	Lines and linestyles

	PICTURE MAP
	DOCK DISPLAY
	TIMEVIEW
	Shelf Style
	Storyline Style
	Band

	NETWORK / ORGANIZATION MAP

	Charts and Graphs
	Charts
	Scatter / Bubble charts
	Pie chart
	Radial bar chart
	Xaxis / yaxis
	Legend
	Marker
	Linestyle
	Adding Data to Charts
	Animating charts

	WIDGETS
	Magnifier widget
	Crop widget
	Timer widget
	Progress bar widget
	Menu bar widget
	Segment

	VisualEyes User Guide Appendix
	Formatting infobox and docviewer text
	Macro tags
	Special characters
	Raw HTML tags

	Formatting docviewers
	Icon types
	Working with structured information
	XML Data Format
	Web Table Data Import
	Sharing Your Project with Others
	Embedding VisualEyes Projects in Web-pages
	Finding URLS of Flickr Images
	Using Google Earth
	Geo-Referencing Maps and Images
	Geo-referencing dot sizes
	Using Google Docs to Store Data
	Table resource
	Accessing individual data elements in a table
	VisEdit Options
	Data Import from Many-Eyes
	Upload XML Project File Directly
	Converting AI Files to XML
	Using invisible views
	The persistence of dot attributes
	Using Resource Pointers
	Debugging tips
	Loading hang-ups
	Saving Versions

	Controlling an Arduino
	Setup for Macintosh
	Setup for Windows
	Getting values from the Arduino

